还剩12页未读,
继续阅读
所属成套资源:2021江苏高考数学苏教版一轮复习讲义
成套系列资料,整套一键下载
2021版江苏高考数学一轮复习讲义:第5章第3节 平面向量的数量积与平面向量应用举例
展开
第三节 平面向量的数量积与平面向量应用举例
[最新考纲] 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.
1.向量的夹角
已知两个非零向量a和b,作=a,=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是:[0,π].
2.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b
投影
|a|cos θ叫做向量a在b方向上的投影,
|b|cos θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积
3.平面向量数量积的运算律
(1)交换律:a·b=b·a;
(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb);
(3)分配律:a·(b+c)=a·b+a·c.
4.平面向量数量积的性质及其坐标表示
设非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.
结论
几何表示
坐标表示
模
|a|=
|a|=
数量积
a·b=|a||b|cos θ
a·b=x1x2+y1y2
夹角
cos θ=
cos θ=
a⊥b
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|
≤·
1.平面向量数量积运算的常用公式
(1)(a+b)·(a-b)=a2-b2;
(2)(a±b)2=a2±2a·b+b2.
2.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;
两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量. ( )
(2)向量在另一个向量方向上的投影为数量,而不是向量.
( )
(3)由a·b=0可得a=0或b=0. ( )
(4)(a·b)c=a(b·c). ( )
[答案](1)√ (2)√ (3)× (4)×
二、教材改编
1.已知a·b=-12,|a|=4,a和b的夹角为135°,则|b|为( )
A.12 B.6
C.3 D.3
B [a·b=|a||b|cos 135°=-12,所以|b|==6.]
2.已知|a|=5,|b|=4,a与b 的夹角θ=120°,则向量b在向量a方向上的投影为 .
-2 [由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2.]
3.已知|a|=2,|b|=6,a·b=-6,则a与b的夹角θ= .
[cos θ===-.
又因为0≤θ≤π,所以θ=.]
4.已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m= .
8 [∵a=(1,m),b=(3,-2),
∴a+b=(4,m-2),由(a+b)⊥b可得
(a+b)·b=12-2m+4=16-2m=0,即m=8.]
考点1 平面向量数量积的运算
平面向量数量积的3种运算方法
(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.
(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(3)利用数量积的几何意义求解.
(1)(2019·全国卷Ⅱ)已知=(2,3),=(3,t),||=1,则·=( )
A.-3 B.-2 C.2 D.3
(2)[一题多解]如图,在梯形ABCD中,AB∥CD,CD=2,∠BAD=,若·=2·,则·= .
(1)C (2)12 [(1)∵=-=(1,t-3),
∴||==1,
∴t=3,
∴·=(2,3)·(1,0)=2.
(2)法一:(定义法)因为·=2·,所以·-·=·,所以·=·.
因为AB∥CD,CD=2,∠BAD=,所以2||=||·||cos ,化简得||=2.故·=·(+)=||2+·=(2)2+2×2cos =12.
法二:(坐标法)如图,建立平面直角坐标系xAy.
依题意,可设点D(m,m),C(m+2,m),B(n,0),其中m>0,n>0,则由·=2·,得(n,0)·(m+2,m)=2(n,0)·(m,m),所以n(m+2)=2nm,化简得m=2.故·=(m,m)·(m+2,m)=2m2+2m=12.]
[逆向问题] 已知菱形ABCD的边长为6,∠ABD=30°,点E,F分别在边BC,DC上,BC=2BE,CD=λCF.若·=-9,则λ的值为( )
A.2 B.3 C.4 D.5
B [依题意得=+=-,=+,因此·=·=2-2+·,于是有×62+×62×cos 60°=-9,由此解得λ=3,故选B.]
解决涉及几何图形的向量的数量积运算常有两种思路:一是定义法,二是坐标法,定义法可先利用向量的加、减运算或数量积的运算律化简后再运算,但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补;坐标法要建立合适的坐标系.
1.(2019·昆明模拟)在▱ABCD中,||=8,||=6,N为DC的中点,=2,则·= .
24 [法一:(定义法)·=(+)·(+)=·=2-2=×82-×62=24.
法二:(特例图形):若▱ABCD为矩形,建立如图所示坐标系,
则N(4,6),M(8,4).
所以=(8,4),=(4,-2)
所以·=(8,4)·(4,-2)=32-8=24.]
2.在△ABC中,AB=4,BC=6,∠ABC=,D是AC的中点,E在BC上,且AE⊥BD,则·=( )
A.16 B.12
C.8 D.-4
A [建立如图所示的平面直角坐标系,则A(4,0),B(0,0),C(0,6),D(2,3).设E(0,b),因为AE⊥BD,所以·=0,即(-4,b)·(2,3)=0,所以b=,
所以E,=,
所以·=16,故选A.]
考点2 平面向量数量积的应用
平面向量的模
求向量模的方法
利用数量积求模是数量积的重要应用,要掌握此类问题的处理方法:
(1)a2=a·a=|a|2或|a|=;
(2)|a±b|==;
(3)若a=(x,y),则|a|=.
(1)[一题多解](2019·昆明调研)已知向量a=(-1,2),b=(1,3),则|2a-b|=( )
A. B.2
C. D.10
(2)已知平面向量a,b的夹角为,且|a|=,|b|=2,在△ABC中,=2a+2b,=2a-6b,D为BC中点,则||等于( )
A.2 B.4
C.6 D.8
(3)已知在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为 .
(1)C (2)A (3)5 [(1)法一:因为a=(-1,2),所以2a=(-2,4),因为b=(1,3),所以2a-b=(-3,1),所以|2a-b|=,故选C.
法二:在直角坐标系xOy中作出平面向量a,2a,b,2a-b,如图所示,由图易得|2a-b|=,故选C.
(2)因为=(+)=(2a+2b+2a-6b)=2a-2b,
所以||2=4(a-b)2=4(a2-2b·a+b2)=4×=4,则||=2.
(3)建立平面直角坐标系如图所示,则A(2,0),设P(0,y),C(0,b),则B(1,b),则+3=(2,-y)+3(1,b-y)=(5,3b-4y).
所以|+3|
=(0≤y≤b).
当y=b时,|+3|min=5.]
在求解与向量的模有关的问题时,往往会涉及“平方”技巧,注意对结论(a±b)2=|a|2+|b|2±2a·b,(a+b+c)2=|a|2+|b|2+|c|2+2(a·b+b·c+a·c)的灵活运用.另外,向量作为工具性的知识,具备代数和几何两种特征,求解此类问题时可以使用数形结合的思想,从而加快解题速度.
平面向量的夹角
求向量夹角问题的方法
(1)定义法:当a,b是非坐标形式时,求a与b的夹角θ,需求出a·b及|a|,|b|或得出它们之间的关系,由cos θ=求得.
(2)坐标法:若已知a=(x1,y1)与b=(x2,y2),则cos〈a,b〉=,〈a,b〉∈[0,π].
(3)解三角形法:可以把所求两向量的夹角放到三角形中进行求解.
(1)[一题多解](2019·全国卷Ⅰ)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为( )
A. B.
C. D.
(2)[一题多解](2019·全国卷Ⅲ)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉= .
(1)B (2) [(1)法一:因为(a-b)⊥b,所以(a-b)·b=a·b-|b|2=0,又因为|a|=2|b|,所以2|b|2cos〈a,b〉-|b|2=0,即cos〈a,b〉=,又知〈a,b〉∈[0,π],所以〈a,b〉=,故选B.
法二:如图,令=a,=b,则=-=a-b,因为(a-b)⊥b,所以∠OBA=90°,
又|a|=2|b|,所以∠AOB=,即〈a,b〉=.故选B.
(2)法一:∵|a|=|b|=1,a·b=0,
∴a·c=a·(2a-b)=2a2-a·b=2,
|c|=|2a-b|=
==3.
∴cos〈a,c〉==.
法二:不妨设a=(1,0),b=(0,1),
则c=2(1,0)-(0,1)=(2,-),
∴cos〈a,c〉==.]
[逆向问题] 若向量a=(k,3),b=(1,4),c=(2,1),已知2a-3b与c的夹角为钝角,则k的取值范围是 .
∪ [因为2a-3b与c的夹角为钝角,
所以(2a-3b)·c<0,即(2k-3,-6)·(2,1)<0,
所以4k-6-6<0,所以k<3.若2a-3b与c反向共线,则=-6,解得k=-,此时夹角不是钝角,综上所述,k的取值范围是∪.]
(1)研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0°或180°;求角时,注意向量夹角的取值范围是[0°,180°];若题目给出向量的坐标表示,可直接利用公式cos θ=求解.
(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0说明不共线的两向量的夹角为钝角.如本例的[逆向问题].
两向量垂直问题
a⊥b⇔a·b=0⇔x1x2+y1y2=0.
已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为 .
[因为⊥,所以·=0.
又=λ+,=-,
所以(λ+)·(-)=0,
即(λ-1)·-λ2+2=0,
所以(λ-1)||||cos 120°-9λ+4=0.
所以(λ-1)×3×2×-9λ+4=0.解得λ=.]
1.利用坐标运算证明两个向量的垂直问题
若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.
2.已知两个向量的垂直关系,求解相关参数的值
根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.
1.(2019·南宁模拟)已知平面向量a,b的夹角为,且|a|=1,|b|=,则a+2b与b的夹角是( )
A. B.
C. D.
A [因为|a +2b|2=|a|2+4|b|2+4a·b=1+1+4×1××cos =3,所以|a+2b|=.
又(a+2b)·b=a·b+2|b|2=1××cos +2×=+=,
所以cos〈a+2b,b〉===,
所以a+2b与b的夹角为.故选A.]
2.(2019·青岛模拟)已知向量||=3,||=2,=m+n,若与的夹角为60°,且⊥,则实数的值为( )
A. B.
C.6 D.4
A [因为向量||=3,||=2,=m+n,与夹角为60°,所以·=3×2×cos 60°=3,
所以·=(-)·(m+n)
=(m-n)·-m||2+n||2
=3(m-n)-9m+4n=-6m+n=0,所以=,故选A.]
3.设向量a,b满足|a|=2,|b|=|a+b|=3,则|a+2b|= .
4 [因为|a|=2,|b|=|a+b|=3,
所以(a+b)2=|a|2+2a·b+|b|2=4+9+2a·b=9,
所以a·b=-2,
所以|a+2b|====4.]
考点3 平面向量的应用
平面向量是有“数”与“形”的双重身份,沟通了代数与几何的关系,所以平面向量的应用非常广泛,主要体现在平面向量与平面几何、函数、不等式、三角函数、解析几何等方面,解决此类问题的关键是将其转化为向量的数量积、模、夹角等问题,进而利用向量方法求解.
(1)在△ABC中,已知向量=(2,2),||=2,·=-4,则△ABC的面积为( )
A.4 B.5
C.2 D.3
(2)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则·(+)的最小值是( )
A.-2 B.-
C.- D.-1
(1)C (2)B [(1)∵=(2,2),∴||=2,
∴·=||||cos A
=2×2cos A=-4,
∴cos A=-,
又A∈(0,π),
∴sin A=,
∴S△ABC=||||sin A=2,故选C.
(2)建立坐标系如图所示,则A,B,C三点的坐标分别为A(0,),B(-1,0),C(1,0).
设P点的坐标为(x,y),则=(-x,-y),=(-1-x,-y),=(1-x,-y),
∴·(+)=(-x,-y)·(-2x,-2y)
=2(x2+y2-y)=2
≥2×=-.
当且仅当x=0,y=时,·(+)取得最小值,最小值为-.故选B.]
用向量法解决平面(解析)几何问题的2种方法
(1)几何法:选取适当的基底(基底中的向量尽量已知,模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;
(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.
一般地,存在坐标系或易建坐标系的题目适合用坐标法.
1.平行四边形ABCD中,AB=4,AD=2,·=4,点P在边CD上,则·的取值范围是( )
A.[-1,8] B.[-1,+∞)
C.[0,8] D.[-1,0]
A [由题意得·=||·||·cos∠BAD=4,解得∠BAD=.以A为原点,AB所在的直线为x轴建立平面直角坐标系(图略),则A(0,0),B(4,0),C(5,),D(1,),因为点P在边CD上,所以不妨设点P的坐标为(a,)(1≤a≤5),则·=(-a,-)·(4-a,-)=a2-4a+3=(a-2)2-1,则当a=2时,·取得最小值-1;当a=5时,·取得最大值8,故选A.]
2.已知向量a,b满足|a|=|b|=a·b=2且(a-c)·(b-c)=0,则|2b-c|的最大值为 .
+1 [∵|a|=|b|=a·b=2,
∴cos〈a,b〉==,
∴〈a,b〉=60°.
设=a=(2,0),=b=(1,),=c,
∵(a-c)·(b-c)=0,
∴⊥,
∴点C在以AB为直径的圆M上,其中M,半径r=1.
延长OB到D,使得=2b(图略),
则D(2,2).
∵2b-c=-=,
∴|2b-c|的最大值为CD的最大值.
∵DM=
=,
∴CD的最大值为DM+r=+1.]
[最新考纲] 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.
1.向量的夹角
已知两个非零向量a和b,作=a,=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是:[0,π].
2.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b
投影
|a|cos θ叫做向量a在b方向上的投影,
|b|cos θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积
3.平面向量数量积的运算律
(1)交换律:a·b=b·a;
(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb);
(3)分配律:a·(b+c)=a·b+a·c.
4.平面向量数量积的性质及其坐标表示
设非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.
结论
几何表示
坐标表示
模
|a|=
|a|=
数量积
a·b=|a||b|cos θ
a·b=x1x2+y1y2
夹角
cos θ=
cos θ=
a⊥b
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|
≤·
1.平面向量数量积运算的常用公式
(1)(a+b)·(a-b)=a2-b2;
(2)(a±b)2=a2±2a·b+b2.
2.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;
两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量. ( )
(2)向量在另一个向量方向上的投影为数量,而不是向量.
( )
(3)由a·b=0可得a=0或b=0. ( )
(4)(a·b)c=a(b·c). ( )
[答案](1)√ (2)√ (3)× (4)×
二、教材改编
1.已知a·b=-12,|a|=4,a和b的夹角为135°,则|b|为( )
A.12 B.6
C.3 D.3
B [a·b=|a||b|cos 135°=-12,所以|b|==6.]
2.已知|a|=5,|b|=4,a与b 的夹角θ=120°,则向量b在向量a方向上的投影为 .
-2 [由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2.]
3.已知|a|=2,|b|=6,a·b=-6,则a与b的夹角θ= .
[cos θ===-.
又因为0≤θ≤π,所以θ=.]
4.已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m= .
8 [∵a=(1,m),b=(3,-2),
∴a+b=(4,m-2),由(a+b)⊥b可得
(a+b)·b=12-2m+4=16-2m=0,即m=8.]
考点1 平面向量数量积的运算
平面向量数量积的3种运算方法
(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.
(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(3)利用数量积的几何意义求解.
(1)(2019·全国卷Ⅱ)已知=(2,3),=(3,t),||=1,则·=( )
A.-3 B.-2 C.2 D.3
(2)[一题多解]如图,在梯形ABCD中,AB∥CD,CD=2,∠BAD=,若·=2·,则·= .
(1)C (2)12 [(1)∵=-=(1,t-3),
∴||==1,
∴t=3,
∴·=(2,3)·(1,0)=2.
(2)法一:(定义法)因为·=2·,所以·-·=·,所以·=·.
因为AB∥CD,CD=2,∠BAD=,所以2||=||·||cos ,化简得||=2.故·=·(+)=||2+·=(2)2+2×2cos =12.
法二:(坐标法)如图,建立平面直角坐标系xAy.
依题意,可设点D(m,m),C(m+2,m),B(n,0),其中m>0,n>0,则由·=2·,得(n,0)·(m+2,m)=2(n,0)·(m,m),所以n(m+2)=2nm,化简得m=2.故·=(m,m)·(m+2,m)=2m2+2m=12.]
[逆向问题] 已知菱形ABCD的边长为6,∠ABD=30°,点E,F分别在边BC,DC上,BC=2BE,CD=λCF.若·=-9,则λ的值为( )
A.2 B.3 C.4 D.5
B [依题意得=+=-,=+,因此·=·=2-2+·,于是有×62+×62×cos 60°=-9,由此解得λ=3,故选B.]
解决涉及几何图形的向量的数量积运算常有两种思路:一是定义法,二是坐标法,定义法可先利用向量的加、减运算或数量积的运算律化简后再运算,但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补;坐标法要建立合适的坐标系.
1.(2019·昆明模拟)在▱ABCD中,||=8,||=6,N为DC的中点,=2,则·= .
24 [法一:(定义法)·=(+)·(+)=·=2-2=×82-×62=24.
法二:(特例图形):若▱ABCD为矩形,建立如图所示坐标系,
则N(4,6),M(8,4).
所以=(8,4),=(4,-2)
所以·=(8,4)·(4,-2)=32-8=24.]
2.在△ABC中,AB=4,BC=6,∠ABC=,D是AC的中点,E在BC上,且AE⊥BD,则·=( )
A.16 B.12
C.8 D.-4
A [建立如图所示的平面直角坐标系,则A(4,0),B(0,0),C(0,6),D(2,3).设E(0,b),因为AE⊥BD,所以·=0,即(-4,b)·(2,3)=0,所以b=,
所以E,=,
所以·=16,故选A.]
考点2 平面向量数量积的应用
平面向量的模
求向量模的方法
利用数量积求模是数量积的重要应用,要掌握此类问题的处理方法:
(1)a2=a·a=|a|2或|a|=;
(2)|a±b|==;
(3)若a=(x,y),则|a|=.
(1)[一题多解](2019·昆明调研)已知向量a=(-1,2),b=(1,3),则|2a-b|=( )
A. B.2
C. D.10
(2)已知平面向量a,b的夹角为,且|a|=,|b|=2,在△ABC中,=2a+2b,=2a-6b,D为BC中点,则||等于( )
A.2 B.4
C.6 D.8
(3)已知在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为 .
(1)C (2)A (3)5 [(1)法一:因为a=(-1,2),所以2a=(-2,4),因为b=(1,3),所以2a-b=(-3,1),所以|2a-b|=,故选C.
法二:在直角坐标系xOy中作出平面向量a,2a,b,2a-b,如图所示,由图易得|2a-b|=,故选C.
(2)因为=(+)=(2a+2b+2a-6b)=2a-2b,
所以||2=4(a-b)2=4(a2-2b·a+b2)=4×=4,则||=2.
(3)建立平面直角坐标系如图所示,则A(2,0),设P(0,y),C(0,b),则B(1,b),则+3=(2,-y)+3(1,b-y)=(5,3b-4y).
所以|+3|
=(0≤y≤b).
当y=b时,|+3|min=5.]
在求解与向量的模有关的问题时,往往会涉及“平方”技巧,注意对结论(a±b)2=|a|2+|b|2±2a·b,(a+b+c)2=|a|2+|b|2+|c|2+2(a·b+b·c+a·c)的灵活运用.另外,向量作为工具性的知识,具备代数和几何两种特征,求解此类问题时可以使用数形结合的思想,从而加快解题速度.
平面向量的夹角
求向量夹角问题的方法
(1)定义法:当a,b是非坐标形式时,求a与b的夹角θ,需求出a·b及|a|,|b|或得出它们之间的关系,由cos θ=求得.
(2)坐标法:若已知a=(x1,y1)与b=(x2,y2),则cos〈a,b〉=,〈a,b〉∈[0,π].
(3)解三角形法:可以把所求两向量的夹角放到三角形中进行求解.
(1)[一题多解](2019·全国卷Ⅰ)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为( )
A. B.
C. D.
(2)[一题多解](2019·全国卷Ⅲ)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉= .
(1)B (2) [(1)法一:因为(a-b)⊥b,所以(a-b)·b=a·b-|b|2=0,又因为|a|=2|b|,所以2|b|2cos〈a,b〉-|b|2=0,即cos〈a,b〉=,又知〈a,b〉∈[0,π],所以〈a,b〉=,故选B.
法二:如图,令=a,=b,则=-=a-b,因为(a-b)⊥b,所以∠OBA=90°,
又|a|=2|b|,所以∠AOB=,即〈a,b〉=.故选B.
(2)法一:∵|a|=|b|=1,a·b=0,
∴a·c=a·(2a-b)=2a2-a·b=2,
|c|=|2a-b|=
==3.
∴cos〈a,c〉==.
法二:不妨设a=(1,0),b=(0,1),
则c=2(1,0)-(0,1)=(2,-),
∴cos〈a,c〉==.]
[逆向问题] 若向量a=(k,3),b=(1,4),c=(2,1),已知2a-3b与c的夹角为钝角,则k的取值范围是 .
∪ [因为2a-3b与c的夹角为钝角,
所以(2a-3b)·c<0,即(2k-3,-6)·(2,1)<0,
所以4k-6-6<0,所以k<3.若2a-3b与c反向共线,则=-6,解得k=-,此时夹角不是钝角,综上所述,k的取值范围是∪.]
(1)研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0°或180°;求角时,注意向量夹角的取值范围是[0°,180°];若题目给出向量的坐标表示,可直接利用公式cos θ=求解.
(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0说明不共线的两向量的夹角为钝角.如本例的[逆向问题].
两向量垂直问题
a⊥b⇔a·b=0⇔x1x2+y1y2=0.
已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为 .
[因为⊥,所以·=0.
又=λ+,=-,
所以(λ+)·(-)=0,
即(λ-1)·-λ2+2=0,
所以(λ-1)||||cos 120°-9λ+4=0.
所以(λ-1)×3×2×-9λ+4=0.解得λ=.]
1.利用坐标运算证明两个向量的垂直问题
若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.
2.已知两个向量的垂直关系,求解相关参数的值
根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.
1.(2019·南宁模拟)已知平面向量a,b的夹角为,且|a|=1,|b|=,则a+2b与b的夹角是( )
A. B.
C. D.
A [因为|a +2b|2=|a|2+4|b|2+4a·b=1+1+4×1××cos =3,所以|a+2b|=.
又(a+2b)·b=a·b+2|b|2=1××cos +2×=+=,
所以cos〈a+2b,b〉===,
所以a+2b与b的夹角为.故选A.]
2.(2019·青岛模拟)已知向量||=3,||=2,=m+n,若与的夹角为60°,且⊥,则实数的值为( )
A. B.
C.6 D.4
A [因为向量||=3,||=2,=m+n,与夹角为60°,所以·=3×2×cos 60°=3,
所以·=(-)·(m+n)
=(m-n)·-m||2+n||2
=3(m-n)-9m+4n=-6m+n=0,所以=,故选A.]
3.设向量a,b满足|a|=2,|b|=|a+b|=3,则|a+2b|= .
4 [因为|a|=2,|b|=|a+b|=3,
所以(a+b)2=|a|2+2a·b+|b|2=4+9+2a·b=9,
所以a·b=-2,
所以|a+2b|====4.]
考点3 平面向量的应用
平面向量是有“数”与“形”的双重身份,沟通了代数与几何的关系,所以平面向量的应用非常广泛,主要体现在平面向量与平面几何、函数、不等式、三角函数、解析几何等方面,解决此类问题的关键是将其转化为向量的数量积、模、夹角等问题,进而利用向量方法求解.
(1)在△ABC中,已知向量=(2,2),||=2,·=-4,则△ABC的面积为( )
A.4 B.5
C.2 D.3
(2)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则·(+)的最小值是( )
A.-2 B.-
C.- D.-1
(1)C (2)B [(1)∵=(2,2),∴||=2,
∴·=||||cos A
=2×2cos A=-4,
∴cos A=-,
又A∈(0,π),
∴sin A=,
∴S△ABC=||||sin A=2,故选C.
(2)建立坐标系如图所示,则A,B,C三点的坐标分别为A(0,),B(-1,0),C(1,0).
设P点的坐标为(x,y),则=(-x,-y),=(-1-x,-y),=(1-x,-y),
∴·(+)=(-x,-y)·(-2x,-2y)
=2(x2+y2-y)=2
≥2×=-.
当且仅当x=0,y=时,·(+)取得最小值,最小值为-.故选B.]
用向量法解决平面(解析)几何问题的2种方法
(1)几何法:选取适当的基底(基底中的向量尽量已知,模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;
(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.
一般地,存在坐标系或易建坐标系的题目适合用坐标法.
1.平行四边形ABCD中,AB=4,AD=2,·=4,点P在边CD上,则·的取值范围是( )
A.[-1,8] B.[-1,+∞)
C.[0,8] D.[-1,0]
A [由题意得·=||·||·cos∠BAD=4,解得∠BAD=.以A为原点,AB所在的直线为x轴建立平面直角坐标系(图略),则A(0,0),B(4,0),C(5,),D(1,),因为点P在边CD上,所以不妨设点P的坐标为(a,)(1≤a≤5),则·=(-a,-)·(4-a,-)=a2-4a+3=(a-2)2-1,则当a=2时,·取得最小值-1;当a=5时,·取得最大值8,故选A.]
2.已知向量a,b满足|a|=|b|=a·b=2且(a-c)·(b-c)=0,则|2b-c|的最大值为 .
+1 [∵|a|=|b|=a·b=2,
∴cos〈a,b〉==,
∴〈a,b〉=60°.
设=a=(2,0),=b=(1,),=c,
∵(a-c)·(b-c)=0,
∴⊥,
∴点C在以AB为直径的圆M上,其中M,半径r=1.
延长OB到D,使得=2b(图略),
则D(2,2).
∵2b-c=-=,
∴|2b-c|的最大值为CD的最大值.
∵DM=
=,
∴CD的最大值为DM+r=+1.]
相关资料
更多