还剩22页未读,
继续阅读
所属成套资源:2021高三统考人教物理一轮复习学案
成套系列资料,整套一键下载
2021高三统考人教物理一轮(经典版)学案:第14章第1讲机械振动
展开
第十四章 机械振动 机械波
考地位
高考对本章的考查主要以选择题和计算题为主,考查以图象为主,强调数形结合,难度中等,分值在5~10分左右。
考纲下载
1.简谐运动(Ⅰ)
2.简谐运动的公式和图象(Ⅱ)
3.单摆、单摆的周期公式(Ⅰ)
4.受迫振动和共振(Ⅰ)
5.机械波、横波和纵波(Ⅰ)
6.横波的图象(Ⅱ)
7.波速、波长、频率(周期)及其关系(Ⅰ)
8.波的干涉和衍射现象(Ⅰ)
9.多普勒效应(Ⅰ)
实验一:探究单摆的运动、用单摆测定重力加速度
考纲解读
1.能够应用简谐运动的特点、公式和图象分析并解决问题。
2.知道单摆,掌握单摆周期公式的应用以及单摆的实验探究。
3.掌握波长、频率和波速的关系及相关计算,并注意计算结果的多解性。
4.高考中对本章的考查形式主要有两种:一是借助振动图象、波的图象或两者结合,考查简谐运动与波的特点、规律及波速、波长和频率的关系;二是通过实验,考查单摆周期公式的运用。
第1讲 机械振动
主干梳理 对点激活
知识点 简谐运动 Ⅰ
1.简谐运动的概念
质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线。
2.平衡位置
振动物体原来静止时的位置。
3.回复力
(1)定义:使振动物体返回到平衡位置的力。
(2)方向:总是指向平衡位置。
(3)来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。
4.描述简谐运动的物理量
物理量
定义
意义
位移
由平衡位置指向质点所在位置的有向线段
描述质点振动中某时刻的位置相对于平衡位置的位移
振幅
振动物体离开平衡位置的最大距离
描述振动的强弱和能量
周期
振动物体完成一次全振动所需时间
频率
振动物体单位时间内完成全振动的次数
描述振动的快慢,两者互为倒数:T=
相位
ωt+φ0
描述周期性运动在各个时刻所处的不同状态
知识点 简谐运动的公式和图象 Ⅱ
1.表达式
(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
(2)运动学表达式:x=Asin(ωt+φ0),其中A表示振幅,ω==2πf表示简谐运动的快慢,ωt+φ0表示简谐运动的相位,φ0叫做初相。
2.简谐运动的图象
(1)如图所示:
(2)物理意义:表示振动质点的位移随时间的变化规律。
知识点 弹簧振子、单摆及其周期公式 Ⅰ
简谐运动的两种模型
模型
弹簧振子
单摆
示意图
简谐运
动条件
(1)弹簧质量可忽略
(2)无摩擦等阻力
(3)在弹簧弹性限度内
(1)摆线为不可伸缩的轻质细线
(2)无空气阻力
(3)最大摆角
θ<5°
回复力
弹簧的弹力提供
摆球重力沿与摆线垂直方向的分力
平衡位置
弹簧处于原长处
最低点
周期
与振幅无关
T=2π
能量转化
弹性势能与动能的相互转化,机械能守恒
重力势能与动能的相互转化,机械能守恒
知识点 受迫振动和共振 Ⅰ
1.受迫振动
系统在驱动力作用下的振动叫做受迫振动。做受迫振动物体的周期(或频率)等于驱动力的周期(或频率),而与物体的固有周期(或频率) 无关。
2.共振曲线
如图所示的共振曲线,表示某振动系统受迫振动的振幅A(纵坐标)随驱动力频率f(横坐标)变化的关系。驱动力的频率f跟振动系统的固有频率f0相差越小,振幅越大;驱动力的频率f等于振动系统的固有频率f0时,振幅最大。
知识点 实验:用单摆测定重力加速度
1.实验原理
由单摆的周期公式T=2π ,可得出g=l,测出单摆的摆长l和振动周期T,就可求出当地的重力加速度g。
2.实验器材
带中心孔的小钢球、约1 m长的细线、带有铁夹的铁架台、游标卡尺、毫米刻度尺、停表。
3.实验步骤
(1)做单摆
取约1 m长的细线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,在单摆平衡位置处做上标记,如图甲所示。
(2)测摆长
用毫米刻度尺量出摆线长L(精确到毫米),用游标卡尺测出小球直径D,则单摆的摆长l=L+。
(3)测周期
将单摆从平衡位置拉开一个角度(不超过5°),然后释放小球,记下单摆摆动30次或50次全振动的总时间,算出平均每摆动一次全振动的时间,即为单摆的振动周期T。
(4)改变摆长,重做几次实验。
(5)数据处理
①公式法:g=。
②图象法:画l-T2图象,如图乙所示。
求出图象斜率k==,则g=4π2k。
4.注意事项
(1)小球选用密度大的钢球。
(2)选用1 m左右难以伸缩,且尽量轻的细线。
(3)悬线顶端不能晃动,需用夹子夹住,保证悬点固定。
(4)单摆必须在同一平面内振动,且摆角小于5°。
(5)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数。
一 堵点疏通
1.简谐运动是匀变速运动。( )
2.振幅等于振子运动轨迹的长度。( )
3.简谐运动的回复力肯定不是恒力。( )
4.弹簧振子每次经过平衡位置时,位移为零、动能为零。( )
5.单摆无论摆角多大都是简谐运动。( )
6.物体做受迫振动时,其振动频率与固有频率无关。( )
7.简谐运动的图象描述的是振动质点的轨迹。( )
答案 1.× 2.× 3.√ 4.× 5.× 6.√ 7.×
二 对点激活
1.一个弹簧振子沿x轴做简谐运动,取平衡位置O为x轴坐标原点。从某时刻开始计时,经过四分之一周期,振子具有沿x轴正方向的最大加速度。能正确反映振子位移x与时间t关系的图象是( )
答案 A
解析 振子的最大加速度与振子的回复力成正比,方向与位移方向相反,具有正向的最大加速度,就应该具有最大的反方向的位移,振子从平衡位置开始计,并向负方向移动时,经四分之一周期振子具有沿x轴正方向的最大加速度,只有A正确,B、C、D都不符合题意。
2.(人教版选修3-4·P17·T3改编)(多选)如图是两个单摆的振动图象,以下说法正确的是( )
A.甲、乙两个摆的振幅之比为2∶1
B.甲、乙两个摆的频率之比为1∶2
C.甲、乙两个摆的摆长之比为1∶2
D.以向右的方向作为摆球偏离平衡位置的位移的正方向,从t=0起,乙第一次到达右方最大位移时,甲振动到了平衡位置,且向左运动
答案 AD
解析 由振动图象知A甲=2 cm,A乙=1 cm,所以甲、乙两个摆的振幅之比为2∶1,故A正确;T甲=4 s,T乙=8 s,所以==,故B错误;由T=2π得,==,故C错误;由图象知,乙第一次到达右方最大位移时为t=2 s时,此时x甲=0,且向左运动,故D正确。
3.(人教版选修3-4·P21·T4改编)一个单摆在地面上做受迫振动,其共振曲线(振幅A与驱动力频率f的关系)如图所示,则( )
A.此单摆的固有周期约为0.5 s
B.此单摆的摆长约为1 m
C.若摆长增大,单摆的固有频率增大
D.若摆长增大,共振曲线的峰将向右移动
答案 B
解析 由共振曲线知此单摆的固有频率为0.5 Hz,固有周期为2 s,A错误;由T=2π ,得此单摆的摆长约为1 m,B正确;若摆长增大,单摆的固有周期增大,固有频率减小,则共振曲线的峰将向左移动,C、D错误。
4.(人教版选修3-4·P5·T3)如下图所示,在t=0到t=4 s的范围内回答以下问题。
(1)质点相对平衡位置的位移的方向在哪些时间内跟它的瞬时速度的方向相同?在哪些时间内跟瞬时速度的方向相反?
(2)质点在第2 s末的位移是多少?
(3)质点在前2 s内走过的路程是多少?
答案 (1)在0~1 s,2~3 s内位移方向跟它的瞬时速度方向相同 在1~2 s,3~4 s内位移方向跟它的瞬时速度方向相反'(2)0 '(3)20 cm
解析 (1)位移—时间图线的某点的切线的斜率即是某时刻的速度,可知,质点相对平衡位置的位移的方向在0~1 s和2~3 s内跟它的瞬时速度的方向相同,在1~2 s 和3~4 s内跟瞬时速度的方向相反。
(2)质点在第2 s末的位移是0。
(3)质点在前2 s内走过的路程是s=2×10 cm=20 cm。
考点细研 悟法培优
考点1 简谐运动的特征
1.动力学特征
F=-kx,“-”表示回复力的方向与位移方向相反,k是比例系数,不一定是弹簧的劲度系数。
2.运动学特征
做简谐运动的物体加速度与物体偏离平衡位置的位移大小成正比而方向相反,为变加速运动,远离平衡位置时,x、F、a、Ep均增大,v、Ek均减小,靠近平衡位置时则相反。
3.周期性特征
相隔nT(n为正整数)的两个时刻,物体处于同一位置且振动状态相同。
4.对称性特征
(1)时间对称性:相隔或(n为正整数)的两个时刻,物体位置关于平衡位置对称,位移、速度、加速度大小相等、方向相反。如图甲所示:
O为平衡位置,A、B为振子偏离平衡位置最大位移处,振子t时刻在C点,t+时刻运动到D点,则位移xD=-xC,速度vD=-vC,aD=-aC。
(2)空间对称性:如图乙所示,振子经过关于平衡位置O对称的两点P、P′(OP=OP′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。
此外,振子由P到O所用时间等于由O到P′所用时间,即tPO=tOP′。振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=tPO。
5.能量特征
振动的能量包括动能Ek和势能Ep,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。
例1 (多选)弹簧振子做简谐运动,O为平衡位置,当它经过点O时开始计时,经过0.3 s,第一次到达点M,再经过0.2 s第二次到达点M,则弹簧振子的周期不可能为( )
A.0.53 s B.1.4 s
C.1.6 s D.2 s
E.3 s
(1)从O点出发第一次到达M点时用时0.3 s有几种情形?
提示:两种。
(2)简谐运动中振子往复运动过程中通过同一段路程,用时相等吗?
提示:相等。
尝试解答 选BDE。
从O点出发第一次到达M点,运动情况有下图甲、乙两种可能。如图甲所示,设O为平衡位置,OB(OC)代表振幅,振子从O→C所需时间为。因为简谐运动具有对称性,所以振子从M→C所用时间和从C→M所用时间相等,故=0.3 s+ s=0.4 s,解得T=1.6 s;如图乙所示,若振子一开始从平衡位置向点B运动,设点M′与点M关于点O对称,则振子从点M′经过点B到点M′所用的时间与振子从点M经过点C到点M所需时间相等,即0.2 s。振子从点O到点M′、从点M′到点O及从点O到点M所需时间相等,为= s,故周期为T=0.5 s+ s≈0.53 s,所以周期不可能为选项B、D、E。
分析简谐运动的技巧
(1)分析简谐运动中各物理量的变化情况时,要以位移为桥梁,位移增大时,振动质点的回复力、加速度、势能均增大,速度、动能均减小;反之,则产生相反的变化。另外,各矢量均在其值为零时改变方向。
(2)分析过程中要特别注意简谐运动的周期性和对称性。
(3)如例1,若没有给出开始时刻质点的振动方向,还须分情况讨论,以防丢解。
[变式1-1] (多选)下列关于简谐振动的说法正确的是( )
A.速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动
B.位移的方向总跟加速度的方向相反,跟速度的方向相同
C.一个全振动指的是动能或势能第一次恢复为原来的大小所经历的过程
D.位移减小时,加速度减小,速度增大
E.物体运动方向指向平衡位置时,速度的方向与位移的方向相反;背离平衡位置时,速度方向与位移方向相同
答案 ADE
解析 通过画运动示意图可知,速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动,A符合题意;回复力与位移方向相反,故加速度与位移方向相反,但速度的方向可以与位移的方向相同,也可以相反,物体运动方向指向平衡位置时,速度的方向与位移的方向相反,背离平衡位置时,速度方向与位移方向相同,B不符合题意,E符合题意;一次全振动,动能和势能均会有两次恢复为原来的大小,C不符合题意;当位移减小时,回复力减小,则加速度在减小,物体正在返回平衡位置,故速度在增大,D符合题意。故答案为A、D、E。
[变式1-2]
(2019·湖北省高三4月调考)(多选)如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量是乙的质量的4倍,弹簧振子做简谐运动的周期T=2π ,式中m为振子的质量,k为弹簧的劲度系数。当细线突然断开后两物块都开始做简谐运动,在运动过程( )
A.甲的振幅是乙的振幅的4倍
B.甲的振幅等于乙的振幅
C.甲的最大速度是乙的最大速度的
D.甲的振动周期是乙的振动周期的2倍
E.甲的振动频率是乙的振动频率的2倍
答案 BCD
解析 线未断开前,对甲、乙整体,两弹簧的弹力等大,又因为两根弹簧相同,所以两根弹簧伸长的长度相同,离开平衡位置的最大距离相同,即振幅一定相同,故A错误,B正确;当线断开的瞬间,弹簧的弹性势能相同,到达平衡后,甲、乙的最大动能相同,由于甲的质量是乙的质量的4倍,由Ek=mv2知道,甲的最大速度一定是乙的最大速度的,故C正确;根据T=2π可知,甲的振动周期是乙的振动周期的2倍,根据f=可知,甲的振动频率是乙的振动频率的,D正确,E错误;故选B、C、D。
考点2 简谐运动的图象
1.图象特征
(1)简谐运动的图象是一条正弦或余弦曲线,是正弦曲线还是余弦曲线取决于质点初始时刻的位置。
(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹。
(3)任一时刻在图线上对应点的切线的斜率大小表示该时刻振子的速度大小,斜率正负表示速度的方向,斜率为正时,表示振子的速度沿x轴正方向;斜率为负时,表示振子的速度沿x轴负方向。
2.图象信息
(1)由图象可以看出质点振动的振幅、周期。
(2)可以确定某时刻质点离开平衡位置的位移。
(3)可以确定某时刻质点的回复力、加速度和速度的方向。
①回复力和加速度的方向:因回复力总是指向平衡位置,故回复力和加速度的方向在图象上总是指向t轴。
②速度的方向:某时刻速度的方向既可以通过该时刻在图象上对应点的切线的斜率来判断,还可以通过下一时刻位移的变化来判断,若下一时刻位移增加,速度方向就是远离t轴;若下一时刻位移减小,速度方向就是指向t轴。
(4)可以确定某段时间质点的位移、回复力、加速度、速度、动能、势能等的变化情况。
例2 (2019·宁夏石嘴山三中一模)(多选)弹簧振子在光滑水平面上做简谐振动,把小钢球从平衡位置向左拉一段距离,放手让其运动。从小钢球通过平衡位置开始计时,其振动图象如图所示,下列说法正确的是( )
A.t=0.5 s时钢球的加速度为正向最大
B.在t0时刻弹簧的形变量为4 cm
C.钢球振动半个周期,回复力做功为零
D.钢球振动一周期,通过的路程等于10 cm
E.钢球振动方程为y=5sinπt cm
(1)弹簧振子的加速度方向与位移方向相同还是相反?
提示:相反。
(2)钢球每经过半个周期,钢球的速度大小改变吗?
提示:不变。
尝试解答 选BCE。
由振动图象可以看出钢球的振动周期为T=2 s,t=0.5 s时钢球的位移为正向最大,加速度为负向最大,故A错误;弹簧振子在光滑水平面上做简谐振动,平衡位置时弹簧的形变量为零,由图知t0时刻钢球在平衡位置的右侧距离平衡位置为4 cm处,则弹簧的形变量等于4 cm,故B正确;经过半个周期后,钢球的速度大小与原来相等,动能变化为零,根据动能定理知回复力做功为零,故C正确;钢球振动一周期,通过的路程s=4A=4×5 cm=20 cm,故D错误;振幅A=5 cm,圆频率ω==π rad/s,则钢球振动方程为y=Asinωt=5sinπt cm,故E正确。故选B、C、E。
对振动图象的理解
(1)可确定振动质点在任一时刻的位移。如图所示,t1、t2时刻质点偏离平衡位置的位移分别为x1=7 cm,x2=-5 cm。
(2)可确定质点振动的振幅,图象中最大位移的绝对值就是质点振动的振幅。如图所示,质点振动的振幅是10 cm。
(3)可确定质点振动的周期和频率,振动图象上一个完整的正弦(或余弦)图形在时间轴上拉开的“长度”表示周期,频率的大小等于周期的倒数。如图所示,OD、AE、BF的间隔都等于质点振动的周期,T=0.2 s,频率f==5 Hz。
(4)可确定质点的振动方向。如图所示,在t1时刻,质点正远离平衡位置向正方向运动;在t3时刻,质点正朝向平衡位置运动。
(5)可比较各时刻质点加速度的大小和方向。例如在图中t1时刻,质点偏离平衡位置的位移x1为正,则加速度a1为负;在t2时刻,质点偏离平衡位置的位移x2为负,则加速度a2为正,因为|x1|>|x2|,所以|a1|>|a2|。
[变式2] (多选)一个质点经过平衡位置O,在A、B间做简谐运动,如图a所示,它的振动图象如图b所示,设向右为正方向,下列说法正确的是( )
A.OB=5 cm
B.第0.2 s末质点的速度方向是A→O
C.第0.4 s末质点的加速度方向是A→O
D.第0.7 s末时质点位置在O点与A点之间
E.在4 s内完成5次全振动
答案 ACE
解析 由图b可知振幅为5 cm,则OB=OA=5 cm,A正确;由图可知0~0.2 s内质点从B向O运动,第0.2 s末质点的速度方向是O→A,B错误;由图可知第0.4 s末质点运动到A点处,则此时质点的加速度方向是A→O,C正确;由图可知第0.7 s末时质点位置在O点与B点之间,D错误;由图b可知周期T=0.8 s,则在4 s内完成全振动的次数为=5,E正确。
考点3 受迫振动与共振
自由振动、受迫振动和共振的比较
振动类型
项目
自由振动
受迫振动
共振
受外力情况
仅受回复力
受到周期性驱动力作用
受到周期性驱动力作用
振动周期
和频率
由系统本身的性质决定,即固有周期和固有频率
由驱动力的周期和频率决定
T驱=T固
f驱=f固
振动能量
无阻尼自由振动物体的机械能不变,阻尼振动物体的机械能减小
由产生驱动力的物体提供
振动物体
获得的能
量最大
常见例子
弹簧振子,单摆
机器运转时底座发生的振动
共振筛,转
速计
例3 如图所示,一竖直圆盘转动时,固定在圆盘上的小圆柱带动一T形支架在竖直方向振动,T形支架的下面系着一弹簧和小球组成的振动系统,小球浸没在水中。当圆盘转动一会儿静止后,小球做________(填“阻尼”“自由”或“受迫”)振动。若弹簧和小球构成的系统振动频率约为3 Hz,现使圆盘以4 s的周期匀速转动,经过一段时间后,小球振动达到稳定,小球的振动频率为________ Hz。逐渐改变圆盘的转动周期,当小球振动的振幅达到最大时,此时圆盘的周期为________ s。
(1)在阻力作用下,振幅逐渐变小的振动称为________振动。
提示:阻尼
(2)当小球振动的振幅达到最大时,圆盘的周期________系统的固有周期。
提示:等于
尝试解答 阻尼 0.25 。
由于水对小球有阻力的作用,因此圆盘停止转动后,小球做阻尼振动;圆盘转动时带动小球做受迫振动,因此小球振动稳定时的振动频率等于驱动力的频率,即小球的振动频率为 Hz=0.25 Hz;当驱动力的频率等于小球的固有频率时小球的振幅最大,即圆盘的转动频率应为3 Hz,则圆盘的周期应为 s。
对共振的理解
(1)共振曲线:如图所示,横坐标为驱动力频率f,纵坐标为振幅A。它直观地反映了驱动力频率对某固有频率为f0的振动系统受迫振动振幅的影响,由图可知,f与f0越接近,振幅A越大;当f=f0时,振幅A最大。
(2)受迫振动中系统能量的转化:做受迫振动的系统的机械能不守恒,系统与外界时刻进行能量交换。
[变式3-1] 关于固有频率,以下说法正确的是( )
A.固有频率是由物体本身决定的
B.物体不振动时固有频率为零
C.振幅越大,固有频率越小
D.所有物体固有频率都相同
答案 A
解析 物体做自由振动时,振动的频率与初始条件无关,仅与系统的固有特性有关(如质量、材质等),称为固有频率,故A正确,B、C、D错误。
[变式3-2] (多选)某简谐振子,自由振动时的振动图象如图甲中实线所示,而在某驱动力作用下做受迫振动时,稳定后的振动图象如图甲中虚线所示,那么,此受迫振动对应的状态可能是图乙中的( )
A.a点 B.b点
C.c点 D.一定不是c点
答案 AD
解析 简谐振子自由振动时,设周期为T1;而在某驱动力作用下做受迫振动时,设周期为T2;显然T1f2;题图乙中c点处代表发生共振,驱动力频率等于固有频率f1;做受迫振动时,驱动力频率f2
考点4 单摆、用单摆测定重力加速度
1.对单摆的理解
(1)回复力:摆球重力沿轨迹切线方向的分力,F回=-mgsinθ=-x=-kx,负号表示回复力F回与位移x的方向相反。
(2)向心力:细线的拉力和重力沿细线方向的分力的合力充当向心力,F向=FT-mgcosθ。
两点说明:
①当摆球在最高点时,F向==0,FT=mgcosθ。
②当摆球在最低点时,F向=,F向最大,
FT=mg+m。
(3)单摆是一个理想化模型,摆角θ≤5°时,单摆的周期为T=2π ,与单摆的振幅A、摆球质量m无关,式中的g由单摆所处的位置决定。
2.等效摆长及等效重力加速度
(1)l′——等效摆长:摆动圆弧的圆心到摆球重心的距离。如图甲所示的双线摆的摆长l′=r+Lcosα。乙图中小球(可看做质点)在半径为R的光滑圆槽中靠近A点的附近振动,其等效摆长为l′=R。
(2)g′——等效重力加速度:与单摆所处物理环境有关。
①在不同星球表面:g′=,M为星球的质量,R为星球的半径。
②单摆处于超重或失重状态下的等效重力加速度分别为g′=g+a和g′=g-a,a为超重或失重时单摆系统整体竖直向上或竖直向下的加速度大小。
3.用单摆测定重力加速度
数据处理的两种方法:
方法一:公式法。
根据公式T=2π ,g=。将测得的几组周期T和摆长l分别代入公式g=中算出多组重力加速度g的值,再求出g的平均值,即为当地重力加速度的值。
方法二:图象法。
由单摆的周期公式T=2π 可得l=T2,因此以摆长l为纵轴,以T2为横轴描点作图,作出的lT2图象理论上是一条过原点的直线,如图所示,求出图象的斜率k,即可求出g值。g=4π2k,k==。
例4 (多选)某同学做“用单摆测定重力加速度”的实验时,通过改变摆线的长度,测出对应的周期,作出了l-T2图象,如图所示。下列关于本实验的分析正确的是( )
A.实验中正确测量周期的方法是,拉开摆球,使摆线偏离平衡位置不大于5°,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T=
B.图象不过原点是因为测量摆长时,把悬挂状态的摆线长当成摆长
C.图象不过原点是因为测量摆长时,把摆线长加上摆球的直径当成摆长
D.利用图象仍然能测出当地的重力加速度为g=或g=,但测量结果会偏大
E.利用图象仍然能测出当地的重力加速度为g=,并且不会有系统误差
(1)若摆长测量值l有偏差Δl,即l真=l+Δl,则如何用g、T表示l?
提示:因为l真=l+Δl=T2,则l=T2-Δl。
(2)根据上述l的表达式,题中图象的斜率是什么?
提示:l=T2-Δl,图中Δl为负值,可知斜率k=。
尝试解答 选ACE。
为了减小测量误差,要从摆球摆过平衡位置时计时,且需测量多次全振动所用时间,然后计算出一次全振动所用的时间,A正确;根据周期公式T=2π 得l=,由于题中图象存在纵截距,即l=+l′,说明测量的摆长值较实际摆长要大,B错误,C正确;根据题中图象上A、B两点有关系式lA=+l′,lB=+l′,两式相减可解得g=,由以上可以看出,最终的结果不影响g值的测量,所以D错误,E正确。
用单摆测定重力加速度实验的误差分析
(1)本实验的系统误差主要来源于单摆模型本身是否符合要求,即:悬点固定,小球质量大、体积小,细线轻质非弹性,振动是在同一竖直平面内的振动,这些要求是否符合。
(2)本实验的偶然误差主要来自时间的测量和摆线长度的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计摆球全振动次数。使用刻度尺测量摆线长度时,要多次测量取平均值以减小误差。
(3)利用图象法处理数据具有形象、直观的特点,同时也能减小实验误差。利用图象法分析处理时要特别注意图象的斜率及截距的物理意义。
[变式4-1] 物理实验小组的同学做“用单摆测重力加速度”的实验。
(1)实验室有如下器材可供选用:
A.长约1 m的细线 B.长约1 m的橡皮绳
C.直径约2 cm的均匀铁球 D.直径约5 cm的均匀木球
E.秒表 F.时钟
G.最小刻度为毫米的刻度尺
实验小组的同学需要从上述器材中选择________(填写器材前面的字母)。
(2)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测量的四种操作过程,图中横坐标原点O为计时起点,A、B、C均为30次全振动的图象,已知sin5°=0.087,sin15°=0.26,这四种操作过程合乎实验要求且误差最小的是________(填字母代号)。
(3)某同学利用单摆测重力加速度,测得的g值与真实值相比偏大,可能的原因是________。
A.测摆长时记录的是摆线的长度
B.开始计时时,秒表过早按下
C.摆线上端未牢固地系于悬点,摆动中出现松动,使摆线长度增加了
D.实验中误将29次全振动数记为30次
答案 (1)ACEG (2)A (3)D
解析 (1)需要选择:长约1 m的细线,直径约2 cm的均匀铁球,秒表(测量50次全振动的时间),最小刻度为毫米的刻度尺(测量摆线长)。
(2)单摆振动的摆角θ≤5°,当θ=5°时单摆振动的振幅A=lsin5°=0.087 m=8.7 cm,为计时准确,在摆球摆至平衡位置时开始计时,故四种操作过程合乎实验要求且误差最小的是选项A。
(3)根据单摆的周期公式推导出重力加速度的表达式g=。将摆线的长误认为摆长,即测量值偏小,所以重力加速度的测量值偏小,故A错误;开始计时时,秒表过早按下,周期的测量值大于真实值,所以重力加速度的测量值偏小,故B错误;摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了,即摆长L的测量值偏小,所以重力加速度的测量值就偏小,故C错误;设单摆29次全振动的时间为t,则单摆的周期T=,若误计为30次,则T测=<,即周期的测量值小于真实值,所以重力加速度的测量值偏大,故D正确。
[变式4-2] 在“用单摆测定重力加速度”的实验中:
(1)摆动时偏角满足的条件是偏角小于5°,为了减小测量周期的误差,计时开始时,摆球应是经过最________(填“高”或“低”)点的位置,且用停表测量单摆完成多次全振动所用的时间,求出周期。图甲中停表示数为一单摆全振动50次所用的时间,则单摆振动周期为________。
(2)用最小刻度为1 mm的刻度尺测摆长,测量情况如图乙所示。O为悬挂点,从图乙中可知单摆的摆长为________ m。
(3)若用L表示摆长,T表示周期,那么重力加速度的表达式为g=________。
(4)考虑到单摆振动时空气浮力的影响后,学生甲说:“因为空气浮力与摆球重力方向相反,它对球的作用相当于重力加速度变小,因此振动周期变大。”学生乙说:“浮力对摆球的影响好像用一个轻一些的摆球做实验,因此振动周期不变”,这两个学生中________。
A.甲的说法正确
B.乙的说法正确
C.两学生的说法都是错误的
答案 (1)低 2.05 s (2)0.9980 (3) (4)A
解析 (1)摆球经过最低点时小球速度最大,容易观察和计时;图甲中停表的示数为1.5 min+12.5 s=102.5 s,则周期T= s=2.05 s。
(2)从悬点到球心的距离即为摆长,可得L=0.9980 m。
(3)由单摆周期公式T=2π 可得g=。
(4)由于受到空气浮力的影响,小球的质量没变而相当于小球所受重力减小,即等效重力加速度减小,因而振动周期变大,A正确。
高考模拟 随堂集训
1.(2019·全国卷Ⅱ)如图,长为l的细绳下方悬挂一小球a,绳的另一端固定在天花板上O点处,在O点正下方l的O′处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时。当小球a摆至最低位置时,细绳会受到铁钉的阻挡。设小球相对于其平衡位置的水平位移为x,向右为正。下列图象中,能描述小球在开始一个周期内的xt关系的是( )
答案 A
解析 摆长为l时单摆的周期T1=2π ,振幅A1=lα(α为摆角),摆长为l时单摆的周期T2=2π =π=,振幅A2=lβ(β为摆角)。根据机械能守恒定律得mgl(1-cosα)=mg(1-cosβ),利用cosα=1-2sin2,cosβ=1-2sin2,以及sin≈tan≈,sin≈tan≈,解得β=2α,故A2=A1,故A正确。
2.(2019·江苏高考)(多选)一单摆做简谐运动,在偏角增大的过程中,摆球的( )
A.位移增大 B.速度增大
C.回复力增大 D.机械能增大
答案 AC
解析 在单摆的偏角增大的过程中,摆球远离平衡位置,故位移增大,速度减小,回复力增大,机械能保持不变,A、C正确,B、D错误。
3.(2018·天津高考)(多选)一振子沿x轴做简谐运动,平衡位置在坐标原点。t=0时振子的位移为-0.1 m,t=1 s时位移为0.1 m,则( )
A.若振幅为0.1 m,振子的周期可能为 s
B.若振幅为0.1 m,振子的周期可能为 s
C.若振幅为0.2 m,振子的周期可能为4 s
D.若振幅为0.2 m,振子的周期可能为6 s
答案 AD
解析 若振幅为0.1 m,根据题意可知从t=0 s到t=1 s振子经历的时间为T=1 s(n=0,1,2,3…),解得T= s(n=0,1,2,3…),当n=1时,T= s,当T= s时,代入得n=,不符合题意,A正确,B错误;如果振幅为0.2 m,结合位移—时间关系图象,有1 s=+nT(n=0,1,2,3,…) ①,或者1 s=T+nT(n=0,1,2,3,…) ②,或者1 s=+nT(n=0,1,2,3…) ③,对于①式,只有当n=0时,T=2 s,为整数;对于②式,T不为整数,对于③式,只有当n=0时,T=6 s,T为整数,故C错误,D正确。
4.(2017·北京高考)某弹簧振子沿x轴的简谐运动图象如图所示,下列描述正确的是( )
A.t=1 s时,振子的速度为零,加速度为负的最大值
B.t=2 s时,振子的速度为负,加速度为正的最大值
C.t=3 s时,振子的速度为负的最大值,加速度为零
D.t=4 s时,振子的速度为正,加速度为负的最大值
答案 A
解析 t=1 s时,振子处于正的最大位移处,振子的速度为零,加速度为负的最大值,A正确;t=2 s时,振子在平衡位置且向x轴负方向运动,则振子的速度为负,加速度为零,B错误;t=3 s时,振子处于负的最大位移处,振子的速度为零,加速度为正的最大值,C错误;t=4 s时,振子在平衡位置且向x轴正方向运动,则振子的速度为正,加速度为零,D错误。
5.(2015·北京高考)用单摆测定重力加速度的实验装置如图1所示。
(1)组装单摆时,应在下列器材中选用________(选填选项前的字母)。
A.长度为1 m左右的细线
B.长度为30 cm左右的细线
C.直径为1.8 cm的塑料球
D.直径为1.8 cm的铁球
(2)测出悬点O到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g=________(用L、n、t表示)。
(3)下表是某同学记录的3组实验数据,并做了部分计算处理。
组次
1
2
3
摆长L/cm
80.00
90.00
100.00
50次全振动时间t/s
90.0
95.5
100.5
振动周期T/s
1.80
1.91
重力加速度g/(m·s-2)
9.74
9.73
请计算出第3组实验中的T=_______s,g=_______m/s2。
(4)用多组实验数据作出T2L图象,也可以求出重力加速度g。已知三位同学作出的T2L图线的示意图如图2中的a、b、c所示,其中a和b平行,b和c都过原点,图线b对应的g值最接近当地重力加速度的值。则相对于图线b,下列分析正确的是________(选填选项前的字母)。
A.出现图线a的原因可能是误将悬点到小球下端的距离记为摆长L
B.出现图线c的原因可能是误将49次全振动记为50次
C.图线c对应的g值小于图线b对应的g值
(5)某同学在家里测重力加速度。他找到细线和铁锁,制成一个单摆,如图3所示。由于家里只有一根量程为30 cm的刻度尺。于是他在细线上的A点做了一个标记,使得悬点O到A点间的细线长度小于刻度尺量程。保持该标记以下的细线长度不变,通过改变O、A间细线长度以改变摆长。实验中,当O、A间细线的长度分别为l1、l2时,测得相应单摆的周期为T1、T2。由此可得重力加速度g=________(用l1、l2、T1、T2表示)。
答案 (1)AD (2) (3)2.01 9.76 (4)B
(5)
解析 (1)单摆模型需要满足的条件是,摆线的长度远大于小球直径,小球的密度越大越好,这样可以忽略空气阻力,所以选A、D。
(2)周期T=,结合T=2π ,推出g=。
(3)周期T===2.01 s,由T=2π ,解出g=9.76 m/s2。
(4)由T=2π ,两边平方后得T2=L,可知T2L图象是过原点的直线,b为正确的图象,a与b相比,周期相同时,摆长更短,说明a对应测量的摆长偏小;c与b相比,摆长相同时,周期偏小,可能是多记录了振动次数;由T2=L知,图线c对应的g值大于图线b对应的g值。
(5)设A到铁锁重心的距离为l,则第1、2次的摆长分别为l+l1、l+l2,由T1=2π ,T2=2π ,联立解得g=。
第十四章 机械振动 机械波
考地位
高考对本章的考查主要以选择题和计算题为主,考查以图象为主,强调数形结合,难度中等,分值在5~10分左右。
考纲下载
1.简谐运动(Ⅰ)
2.简谐运动的公式和图象(Ⅱ)
3.单摆、单摆的周期公式(Ⅰ)
4.受迫振动和共振(Ⅰ)
5.机械波、横波和纵波(Ⅰ)
6.横波的图象(Ⅱ)
7.波速、波长、频率(周期)及其关系(Ⅰ)
8.波的干涉和衍射现象(Ⅰ)
9.多普勒效应(Ⅰ)
实验一:探究单摆的运动、用单摆测定重力加速度
考纲解读
1.能够应用简谐运动的特点、公式和图象分析并解决问题。
2.知道单摆,掌握单摆周期公式的应用以及单摆的实验探究。
3.掌握波长、频率和波速的关系及相关计算,并注意计算结果的多解性。
4.高考中对本章的考查形式主要有两种:一是借助振动图象、波的图象或两者结合,考查简谐运动与波的特点、规律及波速、波长和频率的关系;二是通过实验,考查单摆周期公式的运用。
第1讲 机械振动
主干梳理 对点激活
知识点 简谐运动 Ⅰ
1.简谐运动的概念
质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线。
2.平衡位置
振动物体原来静止时的位置。
3.回复力
(1)定义:使振动物体返回到平衡位置的力。
(2)方向:总是指向平衡位置。
(3)来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。
4.描述简谐运动的物理量
物理量
定义
意义
位移
由平衡位置指向质点所在位置的有向线段
描述质点振动中某时刻的位置相对于平衡位置的位移
振幅
振动物体离开平衡位置的最大距离
描述振动的强弱和能量
周期
振动物体完成一次全振动所需时间
频率
振动物体单位时间内完成全振动的次数
描述振动的快慢,两者互为倒数:T=
相位
ωt+φ0
描述周期性运动在各个时刻所处的不同状态
知识点 简谐运动的公式和图象 Ⅱ
1.表达式
(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
(2)运动学表达式:x=Asin(ωt+φ0),其中A表示振幅,ω==2πf表示简谐运动的快慢,ωt+φ0表示简谐运动的相位,φ0叫做初相。
2.简谐运动的图象
(1)如图所示:
(2)物理意义:表示振动质点的位移随时间的变化规律。
知识点 弹簧振子、单摆及其周期公式 Ⅰ
简谐运动的两种模型
模型
弹簧振子
单摆
示意图
简谐运
动条件
(1)弹簧质量可忽略
(2)无摩擦等阻力
(3)在弹簧弹性限度内
(1)摆线为不可伸缩的轻质细线
(2)无空气阻力
(3)最大摆角
θ<5°
回复力
弹簧的弹力提供
摆球重力沿与摆线垂直方向的分力
平衡位置
弹簧处于原长处
最低点
周期
与振幅无关
T=2π
能量转化
弹性势能与动能的相互转化,机械能守恒
重力势能与动能的相互转化,机械能守恒
知识点 受迫振动和共振 Ⅰ
1.受迫振动
系统在驱动力作用下的振动叫做受迫振动。做受迫振动物体的周期(或频率)等于驱动力的周期(或频率),而与物体的固有周期(或频率) 无关。
2.共振曲线
如图所示的共振曲线,表示某振动系统受迫振动的振幅A(纵坐标)随驱动力频率f(横坐标)变化的关系。驱动力的频率f跟振动系统的固有频率f0相差越小,振幅越大;驱动力的频率f等于振动系统的固有频率f0时,振幅最大。
知识点 实验:用单摆测定重力加速度
1.实验原理
由单摆的周期公式T=2π ,可得出g=l,测出单摆的摆长l和振动周期T,就可求出当地的重力加速度g。
2.实验器材
带中心孔的小钢球、约1 m长的细线、带有铁夹的铁架台、游标卡尺、毫米刻度尺、停表。
3.实验步骤
(1)做单摆
取约1 m长的细线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,在单摆平衡位置处做上标记,如图甲所示。
(2)测摆长
用毫米刻度尺量出摆线长L(精确到毫米),用游标卡尺测出小球直径D,则单摆的摆长l=L+。
(3)测周期
将单摆从平衡位置拉开一个角度(不超过5°),然后释放小球,记下单摆摆动30次或50次全振动的总时间,算出平均每摆动一次全振动的时间,即为单摆的振动周期T。
(4)改变摆长,重做几次实验。
(5)数据处理
①公式法:g=。
②图象法:画l-T2图象,如图乙所示。
求出图象斜率k==,则g=4π2k。
4.注意事项
(1)小球选用密度大的钢球。
(2)选用1 m左右难以伸缩,且尽量轻的细线。
(3)悬线顶端不能晃动,需用夹子夹住,保证悬点固定。
(4)单摆必须在同一平面内振动,且摆角小于5°。
(5)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数。
一 堵点疏通
1.简谐运动是匀变速运动。( )
2.振幅等于振子运动轨迹的长度。( )
3.简谐运动的回复力肯定不是恒力。( )
4.弹簧振子每次经过平衡位置时,位移为零、动能为零。( )
5.单摆无论摆角多大都是简谐运动。( )
6.物体做受迫振动时,其振动频率与固有频率无关。( )
7.简谐运动的图象描述的是振动质点的轨迹。( )
答案 1.× 2.× 3.√ 4.× 5.× 6.√ 7.×
二 对点激活
1.一个弹簧振子沿x轴做简谐运动,取平衡位置O为x轴坐标原点。从某时刻开始计时,经过四分之一周期,振子具有沿x轴正方向的最大加速度。能正确反映振子位移x与时间t关系的图象是( )
答案 A
解析 振子的最大加速度与振子的回复力成正比,方向与位移方向相反,具有正向的最大加速度,就应该具有最大的反方向的位移,振子从平衡位置开始计,并向负方向移动时,经四分之一周期振子具有沿x轴正方向的最大加速度,只有A正确,B、C、D都不符合题意。
2.(人教版选修3-4·P17·T3改编)(多选)如图是两个单摆的振动图象,以下说法正确的是( )
A.甲、乙两个摆的振幅之比为2∶1
B.甲、乙两个摆的频率之比为1∶2
C.甲、乙两个摆的摆长之比为1∶2
D.以向右的方向作为摆球偏离平衡位置的位移的正方向,从t=0起,乙第一次到达右方最大位移时,甲振动到了平衡位置,且向左运动
答案 AD
解析 由振动图象知A甲=2 cm,A乙=1 cm,所以甲、乙两个摆的振幅之比为2∶1,故A正确;T甲=4 s,T乙=8 s,所以==,故B错误;由T=2π得,==,故C错误;由图象知,乙第一次到达右方最大位移时为t=2 s时,此时x甲=0,且向左运动,故D正确。
3.(人教版选修3-4·P21·T4改编)一个单摆在地面上做受迫振动,其共振曲线(振幅A与驱动力频率f的关系)如图所示,则( )
A.此单摆的固有周期约为0.5 s
B.此单摆的摆长约为1 m
C.若摆长增大,单摆的固有频率增大
D.若摆长增大,共振曲线的峰将向右移动
答案 B
解析 由共振曲线知此单摆的固有频率为0.5 Hz,固有周期为2 s,A错误;由T=2π ,得此单摆的摆长约为1 m,B正确;若摆长增大,单摆的固有周期增大,固有频率减小,则共振曲线的峰将向左移动,C、D错误。
4.(人教版选修3-4·P5·T3)如下图所示,在t=0到t=4 s的范围内回答以下问题。
(1)质点相对平衡位置的位移的方向在哪些时间内跟它的瞬时速度的方向相同?在哪些时间内跟瞬时速度的方向相反?
(2)质点在第2 s末的位移是多少?
(3)质点在前2 s内走过的路程是多少?
答案 (1)在0~1 s,2~3 s内位移方向跟它的瞬时速度方向相同 在1~2 s,3~4 s内位移方向跟它的瞬时速度方向相反'(2)0 '(3)20 cm
解析 (1)位移—时间图线的某点的切线的斜率即是某时刻的速度,可知,质点相对平衡位置的位移的方向在0~1 s和2~3 s内跟它的瞬时速度的方向相同,在1~2 s 和3~4 s内跟瞬时速度的方向相反。
(2)质点在第2 s末的位移是0。
(3)质点在前2 s内走过的路程是s=2×10 cm=20 cm。
考点细研 悟法培优
考点1 简谐运动的特征
1.动力学特征
F=-kx,“-”表示回复力的方向与位移方向相反,k是比例系数,不一定是弹簧的劲度系数。
2.运动学特征
做简谐运动的物体加速度与物体偏离平衡位置的位移大小成正比而方向相反,为变加速运动,远离平衡位置时,x、F、a、Ep均增大,v、Ek均减小,靠近平衡位置时则相反。
3.周期性特征
相隔nT(n为正整数)的两个时刻,物体处于同一位置且振动状态相同。
4.对称性特征
(1)时间对称性:相隔或(n为正整数)的两个时刻,物体位置关于平衡位置对称,位移、速度、加速度大小相等、方向相反。如图甲所示:
O为平衡位置,A、B为振子偏离平衡位置最大位移处,振子t时刻在C点,t+时刻运动到D点,则位移xD=-xC,速度vD=-vC,aD=-aC。
(2)空间对称性:如图乙所示,振子经过关于平衡位置O对称的两点P、P′(OP=OP′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。
此外,振子由P到O所用时间等于由O到P′所用时间,即tPO=tOP′。振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=tPO。
5.能量特征
振动的能量包括动能Ek和势能Ep,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。
例1 (多选)弹簧振子做简谐运动,O为平衡位置,当它经过点O时开始计时,经过0.3 s,第一次到达点M,再经过0.2 s第二次到达点M,则弹簧振子的周期不可能为( )
A.0.53 s B.1.4 s
C.1.6 s D.2 s
E.3 s
(1)从O点出发第一次到达M点时用时0.3 s有几种情形?
提示:两种。
(2)简谐运动中振子往复运动过程中通过同一段路程,用时相等吗?
提示:相等。
尝试解答 选BDE。
从O点出发第一次到达M点,运动情况有下图甲、乙两种可能。如图甲所示,设O为平衡位置,OB(OC)代表振幅,振子从O→C所需时间为。因为简谐运动具有对称性,所以振子从M→C所用时间和从C→M所用时间相等,故=0.3 s+ s=0.4 s,解得T=1.6 s;如图乙所示,若振子一开始从平衡位置向点B运动,设点M′与点M关于点O对称,则振子从点M′经过点B到点M′所用的时间与振子从点M经过点C到点M所需时间相等,即0.2 s。振子从点O到点M′、从点M′到点O及从点O到点M所需时间相等,为= s,故周期为T=0.5 s+ s≈0.53 s,所以周期不可能为选项B、D、E。
分析简谐运动的技巧
(1)分析简谐运动中各物理量的变化情况时,要以位移为桥梁,位移增大时,振动质点的回复力、加速度、势能均增大,速度、动能均减小;反之,则产生相反的变化。另外,各矢量均在其值为零时改变方向。
(2)分析过程中要特别注意简谐运动的周期性和对称性。
(3)如例1,若没有给出开始时刻质点的振动方向,还须分情况讨论,以防丢解。
[变式1-1] (多选)下列关于简谐振动的说法正确的是( )
A.速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动
B.位移的方向总跟加速度的方向相反,跟速度的方向相同
C.一个全振动指的是动能或势能第一次恢复为原来的大小所经历的过程
D.位移减小时,加速度减小,速度增大
E.物体运动方向指向平衡位置时,速度的方向与位移的方向相反;背离平衡位置时,速度方向与位移方向相同
答案 ADE
解析 通过画运动示意图可知,速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动,A符合题意;回复力与位移方向相反,故加速度与位移方向相反,但速度的方向可以与位移的方向相同,也可以相反,物体运动方向指向平衡位置时,速度的方向与位移的方向相反,背离平衡位置时,速度方向与位移方向相同,B不符合题意,E符合题意;一次全振动,动能和势能均会有两次恢复为原来的大小,C不符合题意;当位移减小时,回复力减小,则加速度在减小,物体正在返回平衡位置,故速度在增大,D符合题意。故答案为A、D、E。
[变式1-2]
(2019·湖北省高三4月调考)(多选)如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量是乙的质量的4倍,弹簧振子做简谐运动的周期T=2π ,式中m为振子的质量,k为弹簧的劲度系数。当细线突然断开后两物块都开始做简谐运动,在运动过程( )
A.甲的振幅是乙的振幅的4倍
B.甲的振幅等于乙的振幅
C.甲的最大速度是乙的最大速度的
D.甲的振动周期是乙的振动周期的2倍
E.甲的振动频率是乙的振动频率的2倍
答案 BCD
解析 线未断开前,对甲、乙整体,两弹簧的弹力等大,又因为两根弹簧相同,所以两根弹簧伸长的长度相同,离开平衡位置的最大距离相同,即振幅一定相同,故A错误,B正确;当线断开的瞬间,弹簧的弹性势能相同,到达平衡后,甲、乙的最大动能相同,由于甲的质量是乙的质量的4倍,由Ek=mv2知道,甲的最大速度一定是乙的最大速度的,故C正确;根据T=2π可知,甲的振动周期是乙的振动周期的2倍,根据f=可知,甲的振动频率是乙的振动频率的,D正确,E错误;故选B、C、D。
考点2 简谐运动的图象
1.图象特征
(1)简谐运动的图象是一条正弦或余弦曲线,是正弦曲线还是余弦曲线取决于质点初始时刻的位置。
(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹。
(3)任一时刻在图线上对应点的切线的斜率大小表示该时刻振子的速度大小,斜率正负表示速度的方向,斜率为正时,表示振子的速度沿x轴正方向;斜率为负时,表示振子的速度沿x轴负方向。
2.图象信息
(1)由图象可以看出质点振动的振幅、周期。
(2)可以确定某时刻质点离开平衡位置的位移。
(3)可以确定某时刻质点的回复力、加速度和速度的方向。
①回复力和加速度的方向:因回复力总是指向平衡位置,故回复力和加速度的方向在图象上总是指向t轴。
②速度的方向:某时刻速度的方向既可以通过该时刻在图象上对应点的切线的斜率来判断,还可以通过下一时刻位移的变化来判断,若下一时刻位移增加,速度方向就是远离t轴;若下一时刻位移减小,速度方向就是指向t轴。
(4)可以确定某段时间质点的位移、回复力、加速度、速度、动能、势能等的变化情况。
例2 (2019·宁夏石嘴山三中一模)(多选)弹簧振子在光滑水平面上做简谐振动,把小钢球从平衡位置向左拉一段距离,放手让其运动。从小钢球通过平衡位置开始计时,其振动图象如图所示,下列说法正确的是( )
A.t=0.5 s时钢球的加速度为正向最大
B.在t0时刻弹簧的形变量为4 cm
C.钢球振动半个周期,回复力做功为零
D.钢球振动一周期,通过的路程等于10 cm
E.钢球振动方程为y=5sinπt cm
(1)弹簧振子的加速度方向与位移方向相同还是相反?
提示:相反。
(2)钢球每经过半个周期,钢球的速度大小改变吗?
提示:不变。
尝试解答 选BCE。
由振动图象可以看出钢球的振动周期为T=2 s,t=0.5 s时钢球的位移为正向最大,加速度为负向最大,故A错误;弹簧振子在光滑水平面上做简谐振动,平衡位置时弹簧的形变量为零,由图知t0时刻钢球在平衡位置的右侧距离平衡位置为4 cm处,则弹簧的形变量等于4 cm,故B正确;经过半个周期后,钢球的速度大小与原来相等,动能变化为零,根据动能定理知回复力做功为零,故C正确;钢球振动一周期,通过的路程s=4A=4×5 cm=20 cm,故D错误;振幅A=5 cm,圆频率ω==π rad/s,则钢球振动方程为y=Asinωt=5sinπt cm,故E正确。故选B、C、E。
对振动图象的理解
(1)可确定振动质点在任一时刻的位移。如图所示,t1、t2时刻质点偏离平衡位置的位移分别为x1=7 cm,x2=-5 cm。
(2)可确定质点振动的振幅,图象中最大位移的绝对值就是质点振动的振幅。如图所示,质点振动的振幅是10 cm。
(3)可确定质点振动的周期和频率,振动图象上一个完整的正弦(或余弦)图形在时间轴上拉开的“长度”表示周期,频率的大小等于周期的倒数。如图所示,OD、AE、BF的间隔都等于质点振动的周期,T=0.2 s,频率f==5 Hz。
(4)可确定质点的振动方向。如图所示,在t1时刻,质点正远离平衡位置向正方向运动;在t3时刻,质点正朝向平衡位置运动。
(5)可比较各时刻质点加速度的大小和方向。例如在图中t1时刻,质点偏离平衡位置的位移x1为正,则加速度a1为负;在t2时刻,质点偏离平衡位置的位移x2为负,则加速度a2为正,因为|x1|>|x2|,所以|a1|>|a2|。
[变式2] (多选)一个质点经过平衡位置O,在A、B间做简谐运动,如图a所示,它的振动图象如图b所示,设向右为正方向,下列说法正确的是( )
A.OB=5 cm
B.第0.2 s末质点的速度方向是A→O
C.第0.4 s末质点的加速度方向是A→O
D.第0.7 s末时质点位置在O点与A点之间
E.在4 s内完成5次全振动
答案 ACE
解析 由图b可知振幅为5 cm,则OB=OA=5 cm,A正确;由图可知0~0.2 s内质点从B向O运动,第0.2 s末质点的速度方向是O→A,B错误;由图可知第0.4 s末质点运动到A点处,则此时质点的加速度方向是A→O,C正确;由图可知第0.7 s末时质点位置在O点与B点之间,D错误;由图b可知周期T=0.8 s,则在4 s内完成全振动的次数为=5,E正确。
考点3 受迫振动与共振
自由振动、受迫振动和共振的比较
振动类型
项目
自由振动
受迫振动
共振
受外力情况
仅受回复力
受到周期性驱动力作用
受到周期性驱动力作用
振动周期
和频率
由系统本身的性质决定,即固有周期和固有频率
由驱动力的周期和频率决定
T驱=T固
f驱=f固
振动能量
无阻尼自由振动物体的机械能不变,阻尼振动物体的机械能减小
由产生驱动力的物体提供
振动物体
获得的能
量最大
常见例子
弹簧振子,单摆
机器运转时底座发生的振动
共振筛,转
速计
例3 如图所示,一竖直圆盘转动时,固定在圆盘上的小圆柱带动一T形支架在竖直方向振动,T形支架的下面系着一弹簧和小球组成的振动系统,小球浸没在水中。当圆盘转动一会儿静止后,小球做________(填“阻尼”“自由”或“受迫”)振动。若弹簧和小球构成的系统振动频率约为3 Hz,现使圆盘以4 s的周期匀速转动,经过一段时间后,小球振动达到稳定,小球的振动频率为________ Hz。逐渐改变圆盘的转动周期,当小球振动的振幅达到最大时,此时圆盘的周期为________ s。
(1)在阻力作用下,振幅逐渐变小的振动称为________振动。
提示:阻尼
(2)当小球振动的振幅达到最大时,圆盘的周期________系统的固有周期。
提示:等于
尝试解答 阻尼 0.25 。
由于水对小球有阻力的作用,因此圆盘停止转动后,小球做阻尼振动;圆盘转动时带动小球做受迫振动,因此小球振动稳定时的振动频率等于驱动力的频率,即小球的振动频率为 Hz=0.25 Hz;当驱动力的频率等于小球的固有频率时小球的振幅最大,即圆盘的转动频率应为3 Hz,则圆盘的周期应为 s。
对共振的理解
(1)共振曲线:如图所示,横坐标为驱动力频率f,纵坐标为振幅A。它直观地反映了驱动力频率对某固有频率为f0的振动系统受迫振动振幅的影响,由图可知,f与f0越接近,振幅A越大;当f=f0时,振幅A最大。
(2)受迫振动中系统能量的转化:做受迫振动的系统的机械能不守恒,系统与外界时刻进行能量交换。
[变式3-1] 关于固有频率,以下说法正确的是( )
A.固有频率是由物体本身决定的
B.物体不振动时固有频率为零
C.振幅越大,固有频率越小
D.所有物体固有频率都相同
答案 A
解析 物体做自由振动时,振动的频率与初始条件无关,仅与系统的固有特性有关(如质量、材质等),称为固有频率,故A正确,B、C、D错误。
[变式3-2] (多选)某简谐振子,自由振动时的振动图象如图甲中实线所示,而在某驱动力作用下做受迫振动时,稳定后的振动图象如图甲中虚线所示,那么,此受迫振动对应的状态可能是图乙中的( )
A.a点 B.b点
C.c点 D.一定不是c点
答案 AD
解析 简谐振子自由振动时,设周期为T1;而在某驱动力作用下做受迫振动时,设周期为T2;显然T1
1.对单摆的理解
(1)回复力:摆球重力沿轨迹切线方向的分力,F回=-mgsinθ=-x=-kx,负号表示回复力F回与位移x的方向相反。
(2)向心力:细线的拉力和重力沿细线方向的分力的合力充当向心力,F向=FT-mgcosθ。
两点说明:
①当摆球在最高点时,F向==0,FT=mgcosθ。
②当摆球在最低点时,F向=,F向最大,
FT=mg+m。
(3)单摆是一个理想化模型,摆角θ≤5°时,单摆的周期为T=2π ,与单摆的振幅A、摆球质量m无关,式中的g由单摆所处的位置决定。
2.等效摆长及等效重力加速度
(1)l′——等效摆长:摆动圆弧的圆心到摆球重心的距离。如图甲所示的双线摆的摆长l′=r+Lcosα。乙图中小球(可看做质点)在半径为R的光滑圆槽中靠近A点的附近振动,其等效摆长为l′=R。
(2)g′——等效重力加速度:与单摆所处物理环境有关。
①在不同星球表面:g′=,M为星球的质量,R为星球的半径。
②单摆处于超重或失重状态下的等效重力加速度分别为g′=g+a和g′=g-a,a为超重或失重时单摆系统整体竖直向上或竖直向下的加速度大小。
3.用单摆测定重力加速度
数据处理的两种方法:
方法一:公式法。
根据公式T=2π ,g=。将测得的几组周期T和摆长l分别代入公式g=中算出多组重力加速度g的值,再求出g的平均值,即为当地重力加速度的值。
方法二:图象法。
由单摆的周期公式T=2π 可得l=T2,因此以摆长l为纵轴,以T2为横轴描点作图,作出的lT2图象理论上是一条过原点的直线,如图所示,求出图象的斜率k,即可求出g值。g=4π2k,k==。
例4 (多选)某同学做“用单摆测定重力加速度”的实验时,通过改变摆线的长度,测出对应的周期,作出了l-T2图象,如图所示。下列关于本实验的分析正确的是( )
A.实验中正确测量周期的方法是,拉开摆球,使摆线偏离平衡位置不大于5°,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T=
B.图象不过原点是因为测量摆长时,把悬挂状态的摆线长当成摆长
C.图象不过原点是因为测量摆长时,把摆线长加上摆球的直径当成摆长
D.利用图象仍然能测出当地的重力加速度为g=或g=,但测量结果会偏大
E.利用图象仍然能测出当地的重力加速度为g=,并且不会有系统误差
(1)若摆长测量值l有偏差Δl,即l真=l+Δl,则如何用g、T表示l?
提示:因为l真=l+Δl=T2,则l=T2-Δl。
(2)根据上述l的表达式,题中图象的斜率是什么?
提示:l=T2-Δl,图中Δl为负值,可知斜率k=。
尝试解答 选ACE。
为了减小测量误差,要从摆球摆过平衡位置时计时,且需测量多次全振动所用时间,然后计算出一次全振动所用的时间,A正确;根据周期公式T=2π 得l=,由于题中图象存在纵截距,即l=+l′,说明测量的摆长值较实际摆长要大,B错误,C正确;根据题中图象上A、B两点有关系式lA=+l′,lB=+l′,两式相减可解得g=,由以上可以看出,最终的结果不影响g值的测量,所以D错误,E正确。
用单摆测定重力加速度实验的误差分析
(1)本实验的系统误差主要来源于单摆模型本身是否符合要求,即:悬点固定,小球质量大、体积小,细线轻质非弹性,振动是在同一竖直平面内的振动,这些要求是否符合。
(2)本实验的偶然误差主要来自时间的测量和摆线长度的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计摆球全振动次数。使用刻度尺测量摆线长度时,要多次测量取平均值以减小误差。
(3)利用图象法处理数据具有形象、直观的特点,同时也能减小实验误差。利用图象法分析处理时要特别注意图象的斜率及截距的物理意义。
[变式4-1] 物理实验小组的同学做“用单摆测重力加速度”的实验。
(1)实验室有如下器材可供选用:
A.长约1 m的细线 B.长约1 m的橡皮绳
C.直径约2 cm的均匀铁球 D.直径约5 cm的均匀木球
E.秒表 F.时钟
G.最小刻度为毫米的刻度尺
实验小组的同学需要从上述器材中选择________(填写器材前面的字母)。
(2)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测量的四种操作过程,图中横坐标原点O为计时起点,A、B、C均为30次全振动的图象,已知sin5°=0.087,sin15°=0.26,这四种操作过程合乎实验要求且误差最小的是________(填字母代号)。
(3)某同学利用单摆测重力加速度,测得的g值与真实值相比偏大,可能的原因是________。
A.测摆长时记录的是摆线的长度
B.开始计时时,秒表过早按下
C.摆线上端未牢固地系于悬点,摆动中出现松动,使摆线长度增加了
D.实验中误将29次全振动数记为30次
答案 (1)ACEG (2)A (3)D
解析 (1)需要选择:长约1 m的细线,直径约2 cm的均匀铁球,秒表(测量50次全振动的时间),最小刻度为毫米的刻度尺(测量摆线长)。
(2)单摆振动的摆角θ≤5°,当θ=5°时单摆振动的振幅A=lsin5°=0.087 m=8.7 cm,为计时准确,在摆球摆至平衡位置时开始计时,故四种操作过程合乎实验要求且误差最小的是选项A。
(3)根据单摆的周期公式推导出重力加速度的表达式g=。将摆线的长误认为摆长,即测量值偏小,所以重力加速度的测量值偏小,故A错误;开始计时时,秒表过早按下,周期的测量值大于真实值,所以重力加速度的测量值偏小,故B错误;摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了,即摆长L的测量值偏小,所以重力加速度的测量值就偏小,故C错误;设单摆29次全振动的时间为t,则单摆的周期T=,若误计为30次,则T测=<,即周期的测量值小于真实值,所以重力加速度的测量值偏大,故D正确。
[变式4-2] 在“用单摆测定重力加速度”的实验中:
(1)摆动时偏角满足的条件是偏角小于5°,为了减小测量周期的误差,计时开始时,摆球应是经过最________(填“高”或“低”)点的位置,且用停表测量单摆完成多次全振动所用的时间,求出周期。图甲中停表示数为一单摆全振动50次所用的时间,则单摆振动周期为________。
(2)用最小刻度为1 mm的刻度尺测摆长,测量情况如图乙所示。O为悬挂点,从图乙中可知单摆的摆长为________ m。
(3)若用L表示摆长,T表示周期,那么重力加速度的表达式为g=________。
(4)考虑到单摆振动时空气浮力的影响后,学生甲说:“因为空气浮力与摆球重力方向相反,它对球的作用相当于重力加速度变小,因此振动周期变大。”学生乙说:“浮力对摆球的影响好像用一个轻一些的摆球做实验,因此振动周期不变”,这两个学生中________。
A.甲的说法正确
B.乙的说法正确
C.两学生的说法都是错误的
答案 (1)低 2.05 s (2)0.9980 (3) (4)A
解析 (1)摆球经过最低点时小球速度最大,容易观察和计时;图甲中停表的示数为1.5 min+12.5 s=102.5 s,则周期T= s=2.05 s。
(2)从悬点到球心的距离即为摆长,可得L=0.9980 m。
(3)由单摆周期公式T=2π 可得g=。
(4)由于受到空气浮力的影响,小球的质量没变而相当于小球所受重力减小,即等效重力加速度减小,因而振动周期变大,A正确。
高考模拟 随堂集训
1.(2019·全国卷Ⅱ)如图,长为l的细绳下方悬挂一小球a,绳的另一端固定在天花板上O点处,在O点正下方l的O′处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时。当小球a摆至最低位置时,细绳会受到铁钉的阻挡。设小球相对于其平衡位置的水平位移为x,向右为正。下列图象中,能描述小球在开始一个周期内的xt关系的是( )
答案 A
解析 摆长为l时单摆的周期T1=2π ,振幅A1=lα(α为摆角),摆长为l时单摆的周期T2=2π =π=,振幅A2=lβ(β为摆角)。根据机械能守恒定律得mgl(1-cosα)=mg(1-cosβ),利用cosα=1-2sin2,cosβ=1-2sin2,以及sin≈tan≈,sin≈tan≈,解得β=2α,故A2=A1,故A正确。
2.(2019·江苏高考)(多选)一单摆做简谐运动,在偏角增大的过程中,摆球的( )
A.位移增大 B.速度增大
C.回复力增大 D.机械能增大
答案 AC
解析 在单摆的偏角增大的过程中,摆球远离平衡位置,故位移增大,速度减小,回复力增大,机械能保持不变,A、C正确,B、D错误。
3.(2018·天津高考)(多选)一振子沿x轴做简谐运动,平衡位置在坐标原点。t=0时振子的位移为-0.1 m,t=1 s时位移为0.1 m,则( )
A.若振幅为0.1 m,振子的周期可能为 s
B.若振幅为0.1 m,振子的周期可能为 s
C.若振幅为0.2 m,振子的周期可能为4 s
D.若振幅为0.2 m,振子的周期可能为6 s
答案 AD
解析 若振幅为0.1 m,根据题意可知从t=0 s到t=1 s振子经历的时间为T=1 s(n=0,1,2,3…),解得T= s(n=0,1,2,3…),当n=1时,T= s,当T= s时,代入得n=,不符合题意,A正确,B错误;如果振幅为0.2 m,结合位移—时间关系图象,有1 s=+nT(n=0,1,2,3,…) ①,或者1 s=T+nT(n=0,1,2,3,…) ②,或者1 s=+nT(n=0,1,2,3…) ③,对于①式,只有当n=0时,T=2 s,为整数;对于②式,T不为整数,对于③式,只有当n=0时,T=6 s,T为整数,故C错误,D正确。
4.(2017·北京高考)某弹簧振子沿x轴的简谐运动图象如图所示,下列描述正确的是( )
A.t=1 s时,振子的速度为零,加速度为负的最大值
B.t=2 s时,振子的速度为负,加速度为正的最大值
C.t=3 s时,振子的速度为负的最大值,加速度为零
D.t=4 s时,振子的速度为正,加速度为负的最大值
答案 A
解析 t=1 s时,振子处于正的最大位移处,振子的速度为零,加速度为负的最大值,A正确;t=2 s时,振子在平衡位置且向x轴负方向运动,则振子的速度为负,加速度为零,B错误;t=3 s时,振子处于负的最大位移处,振子的速度为零,加速度为正的最大值,C错误;t=4 s时,振子在平衡位置且向x轴正方向运动,则振子的速度为正,加速度为零,D错误。
5.(2015·北京高考)用单摆测定重力加速度的实验装置如图1所示。
(1)组装单摆时,应在下列器材中选用________(选填选项前的字母)。
A.长度为1 m左右的细线
B.长度为30 cm左右的细线
C.直径为1.8 cm的塑料球
D.直径为1.8 cm的铁球
(2)测出悬点O到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g=________(用L、n、t表示)。
(3)下表是某同学记录的3组实验数据,并做了部分计算处理。
组次
1
2
3
摆长L/cm
80.00
90.00
100.00
50次全振动时间t/s
90.0
95.5
100.5
振动周期T/s
1.80
1.91
重力加速度g/(m·s-2)
9.74
9.73
请计算出第3组实验中的T=_______s,g=_______m/s2。
(4)用多组实验数据作出T2L图象,也可以求出重力加速度g。已知三位同学作出的T2L图线的示意图如图2中的a、b、c所示,其中a和b平行,b和c都过原点,图线b对应的g值最接近当地重力加速度的值。则相对于图线b,下列分析正确的是________(选填选项前的字母)。
A.出现图线a的原因可能是误将悬点到小球下端的距离记为摆长L
B.出现图线c的原因可能是误将49次全振动记为50次
C.图线c对应的g值小于图线b对应的g值
(5)某同学在家里测重力加速度。他找到细线和铁锁,制成一个单摆,如图3所示。由于家里只有一根量程为30 cm的刻度尺。于是他在细线上的A点做了一个标记,使得悬点O到A点间的细线长度小于刻度尺量程。保持该标记以下的细线长度不变,通过改变O、A间细线长度以改变摆长。实验中,当O、A间细线的长度分别为l1、l2时,测得相应单摆的周期为T1、T2。由此可得重力加速度g=________(用l1、l2、T1、T2表示)。
答案 (1)AD (2) (3)2.01 9.76 (4)B
(5)
解析 (1)单摆模型需要满足的条件是,摆线的长度远大于小球直径,小球的密度越大越好,这样可以忽略空气阻力,所以选A、D。
(2)周期T=,结合T=2π ,推出g=。
(3)周期T===2.01 s,由T=2π ,解出g=9.76 m/s2。
(4)由T=2π ,两边平方后得T2=L,可知T2L图象是过原点的直线,b为正确的图象,a与b相比,周期相同时,摆长更短,说明a对应测量的摆长偏小;c与b相比,摆长相同时,周期偏小,可能是多记录了振动次数;由T2=L知,图线c对应的g值大于图线b对应的g值。
(5)设A到铁锁重心的距离为l,则第1、2次的摆长分别为l+l1、l+l2,由T1=2π ,T2=2π ,联立解得g=。
相关资料
更多