搜索
    上传资料 赚现金
    英语朗读宝

    2019版高考数学(理)一轮精选教师用书人教通用:第4章6第6讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

    2019版高考数学(理)一轮精选教师用书人教通用:第4章6第6讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用第1页
    2019版高考数学(理)一轮精选教师用书人教通用:第4章6第6讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用第2页
    2019版高考数学(理)一轮精选教师用书人教通用:第4章6第6讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用第3页
    还剩18页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019版高考数学(理)一轮精选教师用书人教通用:第4章6第6讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

    展开

    第6讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用


    1.y=Asin(ωx+φ)的有关概念

    y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
    振幅
    周期
    频率
    相位
    初相
    A
    T=
    f==
    ωx+φ
    φ
    2.用五点法画y=Asin(ωx+φ)一个周期内的简图
    用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:
    x





    ωx+φ
    0

    π


    y=Asin(ωx+φ)
    0
    A
    0
    -A
    0
    3.三角函数图象变换的两种方法(ω>0)


    判断正误(正确的打“√”,错误的打“×”)
    (1)把y=sin x的图象上各点的横坐标缩短为原来的,纵坐标不变,所得图象对应的函数解析式为y=sin x.(  )
    (2)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.(  )
    (3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.(  )
    (4)如果y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.(  )
    (5)若函数y=Asin(ωx+φ)为偶函数,则φ=2kπ+(k∈Z).(  )
    答案:(1)× (2)× (3)× (4)√ (5)×
    函数y=cos x|tan x|的图象为(  )

    解析:选C.因为|tan x|≥0,
    所以当x∈时,cos x≥0,y≥0,
    当x∈时,cos x≤0,y≤0.由图可知,故选C.
    (2016·高考四川卷)为了得到函数y=sin的图象,只需把函数y=sin 2x的图象上所有的点(  )
    A.向左平行移动个单位长度
    B.向右平行移动个单位长度
    C.向左平行移动个单位长度
    D.向右平行移动个单位长度
    解析:选D.因为y=sin=sin,所以只需把函数y=sin 2x的图象上所有的点向右平行移动个单位长度即可,故选D.
    已知函数f(x)=2sin的图象经过点(0,1),则该函数的振幅为____________,周期T为____________,频率为________________________,初相φ为____________.
    解析:振幅A=2,T==6,f=,因为图象过点(0,1),所以1=2sin φ,
    所以sin φ=,又|φ|0)的图象如图所示,则ω=________.

    解析:由题图可知,=-=,
    即T=,所以=,故ω=.
    答案:


          五点法作图及图象变换
    [典例引领]
    (2018·济南高三模拟)已知函数f(x)=Asin(ωx+φ)的最小正周期是π,且当x=时,f(x)取得最大值2.
    (1)求f(x)的解析式;
    (2)作出f(x)在[0,π]上的图象(要列表).
    【解】 (1)因为函数f(x)的最小正周期是π,所以ω=2.又因为x=时,f(x)取得最大值2.
    所以A=2,
    同时2×+φ=2kπ+,k∈Z,
    φ=2kπ+,k∈Z,因为-0,所以m的最小值为.

    (1)函数y=Asin(ωx+φ)(A>0,ω>0)的图象的两种作法
    ①五点法:用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象.
    ②图象变换法:由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.
    (2)三角函数图象的左右平移时应注意的三点
    ①弄清楚平移方向,平移哪个函数的图象,得到哪个函数的图象.
    ②注意平移前后两个函数的名称一致,若不一致,应先利用诱导公式化为同名函数.
    ③由y=Asin ωx的图象得到y=Asin(ωx+φ)的图象时,需平移的单位数应为而不是|φ|.
    [提醒] y=Asin(ωx+φ)的图象横向伸缩规律,可联系周期计算公式T=进行记忆;纵向伸缩规律,可联系函数的最值进行记忆. 
    [通关练习]
    1.(2017·高考全国卷Ⅰ)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是(  )
    A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
    B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
    C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
    D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
    解析:选D.易知C1:y=cos x=sin,把曲线C1上的各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin的图象,再把所得函数的图象向左平移个单位长度,可得函数y=sin
    =sin的图象,即曲线C2,故选D.
    2.某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:

    ωx+φ
    0

    π


    x





    Asin(ωx+φ)
    0
    5

    -5
    0
    请将上表数据补充完整,并直接写出函数f(x)的解析式.
    解:根据表中已知数据,得A=5,ω=2,φ=-.数据补全如表:

    ωx+φ
    0

    π


    x




    π
    Asin(ωx+φ)
    0
    5
    0
    -5
    0
    且函数解析式为f(x)=5sin.

          由图象确定y=Asin(ωx+φ)的
    解析式
    [典例引领]
    (2018·兰州市诊断考试)函数f(x)=sin(ωx+φ)的部分图象如图所示,如果x1+x2=,则f(x1)+f(x2)=(  )

    A.           B.
    C.0 D.-
    【解析】 由图知,T=π,所以ω=2,所以f(x)=sin(2x+φ),因为在函数f(x)的图象上,所以sin=0,即+φ=kπ,k∈Z,又|φ|0,|φ|0,ω>0,00)的单调性来研究,由-+2kπ≤ωx+φ≤+2kπ(k∈Z)得单调增区间;由+2kπ≤ωx+φ≤+2kπ(k∈Z)得单调减区间.
    (4)对称性:利用y=sin x的对称中心为(kπ,0)(k∈Z)求解,令ωx+φ=kπ(k∈Z)得其对称中心.
    利用y=sin x的对称轴为x=kπ+(k∈Z)求解,令ωx+φ=kπ+(k∈Z)得其对称轴.
    [通关练习]
    1.(2018·云南省第一次统一检测)函数f(x)=sin(ωx+φ),的部分图象如图所示,则f(x)的单调递增区间为(  )

    A.(-1+4kπ,1+4kπ),k∈Z
    B.(-3+8kπ,1+8kπ),k∈Z
    C.(-1+4k,1+4k),k∈Z
    D.(-3+8k,1+8k),k∈Z
    解析:选D.由题图,知T=4×(3-1)=8,所以ω==,所以f(x)=sin.把(1,1)代入,得sin=1,即+φ=+2kπ(k∈Z),又|φ|

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map