![2020版高考数学一轮复习课时作业05《 函数的单调性与最值》(含解析)第1页](http://www.enxinlong.com/img-preview/3/3/5755436/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学一轮复习课时作业05《 函数的单调性与最值》(含解析)第2页](http://www.enxinlong.com/img-preview/3/3/5755436/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学一轮复习课时作业05《 函数的单调性与最值》(含解析)第3页](http://www.enxinlong.com/img-preview/3/3/5755436/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2020版高考数学一轮复习课时作业 (含解析)
2020版高考数学一轮复习课时作业05《 函数的单调性与最值》(含解析) 练习
展开课时作业5 函数的单调性与最值一、选择题1.(2019·潍坊市统一考试)下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( B )A.y= B.y=-x2+1C.y=2x D.y=log2|x|解析:因为函数的图象是轴对称图形,所以排除A,C,又y=-x2+1在(0,+∞)上单调递减,y=log2|x|在(0,+∞)上单调递增,所以排除D.故选B.2.已知函数f(x)=,则该函数的单调递增区间为( B )A.(-∞,1] B.[3,+∞)C.(-∞,-1] D.[1,+∞)解析:设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).3.函数y=的值域为( C )A.(-∞,1) B.C. D.解析:因为x2≥0,所以x2+1≥1,即∈(0,1],故y=∈.4.(2019·洛阳高三统考)若函数f(x)同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x∈R,都有f(-x)+f(x)=0;(2)∀x1,x2∈R,且x1≠x2,都有<0.①f(x)=sinx;②f(x)=-2x3;③f(x)=1-x;④f(x)=ln(+x).以上四个函数中,“优美函数”的个数是( B )A.0 B.1C.2 D.3解析:由条件(1),得f(x)是奇函数,由条件(2),得f(x)是R上的单调减函数.对于①,f(x)=sinx在R上不单调,故不是“优美函数”;对于②,f(x)=-2x3既是奇函数,又在R上单调递减,故是“优美函数”;对于③,f(x)=1-x不是奇函数,故不是“优美函数”;对于④,易知f(x)在R上单调递增,故不是“优美函数”.故选B.5.函数y=f(x)在[0,2]上单调递增,且函数f(x)的图象关于直线x=2对称,则下列结论成立的是( B )A.f(1)<f<f B.f<f(1)<fC.f<f<f(1) D.f<f<f(1)解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),所以f=f,f=f.又0<<1<<2,f(x)在[0,2]上单调递增,所以f<f(1)<f,即f<f(1)<f.6.已知a>0,设函数f(x)=(x∈[-a,a])的最大值为M,最小值为N,那么M+N=( D )A.2 017 B.2 019C.4 032 D.4 036解析:由题意得f(x)==2 019-.∵y=2 019x+1在[-a,a]上是单调递增的,∴f(x)=2 019-在[-a,a]上是单调递增的,∴M=f(a),N=f(-a),∴M+N=f(a)+f(-a)=4 038--=4 036.二、填空题7.已知函数f(x)为(0,+∞)上的增函数,若f(a2-a)>f(a+3),则实数a的取值范围为(-3,-1)∪(3,+∞).解析:由已知可得解得-3<a<-1或a>3.所以实数a的取值范围为(-3,-1)∪(3,+∞).8.(2018·北京卷)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx(答案不唯一).解析:这是一道开放性试题,答案不唯一,只要满足f(x)>f(0)对任意的x∈(0,2]都成立,且函数f(x)在[0,2]上不是增函数即可.如f(x)=sinx,答案不唯一.9.若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则实数a的取值范围为a≥-.解析:若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则函数g(x)=ax2+x在(0,1)上单调递增且g(x)>0恒成立.当a=0时,g(x)=x在(0,1)上单调递增且g(x)>0,符合题意;当a>0时,g(x)图象的对称轴为x=-<0,且有g(x)>0,所以g(x)在(0,1)上单调递增,符合题意;当a<0时,需满足g(x)图象的对称轴x=-≥1,且有g(x)>0,解得a≥-,则-≤a<0.综上,a≥-.10.若函数f(x)=ax+b,x∈[a-4,a]的图象关于原点对称,则函数g(x)=bx+,x∈[-4,-1]的值域为[-2,-].解析:由函数f(x)的图象关于原点对称,可得a-4+a=0,即a=2,则函数f(x)=2x+b,其定义域为[-2,2],所以f(0)=0,所以b=0,所以g(x)=,易知g(x)在[-4,-1]上单调递减,故值域为[g(-1),g(-4)],即[-2,-].三、解答题11.已知f(x)=(x≠a).(1)若a=-2,试证明:f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.解:(1)证明:任设x1<x2<-2,则f(x1)-f(x2)=-=.∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=-=.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].12.已知函数f(x)=ax+(1-x)(a>0),且f(x)在[0,1]上的最小值为g(a),求g(a)的最大值.解:f(x)=x+,当a>1时,a->0,此时f(x)在[0,1]上为增函数,∴g(a)=f(0)=;当0<a<1时,a-<0,此时f(x)在[0,1]上为减函数,∴g(a)=f(1)=a;当a=1时,f(x)=1,此时g(a)=1.∴g(a)=∴g(a)在(0,1)上为增函数,在[1,+∞)上为减函数,又a=1时,有a==1,∴当a=1时,g(a)取最大值1.13.(2019·湖北八校联考)已知函数f(x)=若f(e2)=f(1),f(e)=f(0),则函数f(x)的值域为(,]∪[2,+∞).解析:由题意可得解得∴当x>0时,f(x)=(lnx)2-2lnx+3=(lnx-1)2+2≥2;当x≤0时,<ex+≤e0+=,则函数f(x)的值域为(,]∪[2,+∞). 14.已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)证明:f(x)为单调递减函数;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0.故f(1)=0.(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0.所以f<0,即f(x1)-f(x2)<0.因此f(x1)<f(x2).所以函数f(x)在区间(0,+∞)上是单调递减函数.(3)∵f(x)在(0,+∞)上是单调递减函数.∴f(x)在[2,9]上的最小值为f(9).由f=f(x1)-f(x2)得,f=f(9)-f(3).而f(3)=-1,所以f(9)=-2.∴f(x)在[2,9]上的最小值为-2.15.(2019·河南郑州一模)已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.718 2…),且在区间[e,2e]上是减函数,令a=,b=,c=,则f(a),f(b),f(c)的大小关系(用不等号连接)为( A )A.f(b)>f(a)>f(c) B.f(b)>f(c)>f(a)C.f(a)>f(b)>f(c) D.f(a)>f(c)>f(b)解析:∵f(x)是R上的奇函数,满足f(x+2e)=-f(x),∴f(x+2e)=f(-x),∴函数f(x)的图象关于直线x=e对称,∵f(x)在区间[e,2e]上为减函数,∴f(x)在区间[0,e]上为增函数,又易知0<c<a<b<e,∴f(c)<f(a)<f(b),故选A.16.(2019·湖南湘东五校联考)已知函数f(x)=g(x)=x2-2x,设a为实数,若存在实数m,使f(m)-2g(a)=0,则实数a的取值范围为[-1,3].解析:当-7≤x≤0时,f(x)=|x+1|∈[0,6],当e-2≤x≤e时,f(x)=lnx单调递增,得f(x)∈[-2,1],综上,f(x)∈[-2,6].若存在实数m,使f(m)-2g(a)=0,则有-2≤2g(a)≤6,即-1≤a2-2a≤3⇒-1≤a≤3.
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)