2020届高考数学一轮复习:课时作业62《变量间的相关关系与统计案例》(含解析) 练习
展开课时作业62 变量间的相关关系与统计案例
1.(2019·辽宁丹东教学质量监测)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K2=6.705,则所得到的统计学结论是:有 的把握认为“学生性别与支持该活动没有关系”.( C )
附:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A.99.9% B.99%
C.1% D.0.1%
解析:因为6.635<6.705<10.828,因此有1%的把握认为“学生性别与支持该活动没有关系”,故选C.
2.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是( C )
A.x与y正相关,x与z负相关
B.x与y正相关,x与z正相关
C.x与y负相关,x与z负相关
D.x与y负相关,x与z正相关
解析:由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正相关,所以z随y的增大而增大,减小而减小,所以z随x的增大而减小,x与z负相关,故选C.
3.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…,8),其线性回归方程是=x+,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,则实数的值是( B )
A. B.
C. D.
解析:依题意可知样本点的中心为,则=×+,解得=.
4.为考察A、B两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:
根据图中信息,在下列各项中,说法正确的是( C )
A.药物A、B对该疾病均没有预防效果
B.药物A、B对该疾病均有显著的预防效果
C.药物A的预防效果优于药物B的预防效果
D.药物B的预防效果优于药物A的预防效果
解析:根据两个等高条形图知,药物A实验显示不服药与服药时患病的差异较药物B实验显示明显大,
∴药物A的预防效果优于药物B的预防效果.故选C.
5.(2019·河南焦作一模)已知变量x和y的统计数据如下表:
x | 3 | 4 | 5 | 6 | 7 |
y | 2.5 | 3 | 4 | 4.5 | 6 |
根据上表可得回归直线方程为=x-0.25,据此可以预测当x=8时,=( C )
A.6.4 B.6.25
C.6.55 D.6.45
解析:由题意知==5,
==4,
将点(5,4)代入=x-0.25,解得=0.85,则=0.85x-0.25,
所以当x=8时,=0.85×8-0.25=6.55,故选C.
6.(2019·南昌模拟)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
| 非一线 | 一线 | 总计 |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由K2=算得,K2=≈9.616,参照附表,得到的正确结论是( C )
A.在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别无关”
C.在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别有关”
D.在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别无关”
解析:由题意K2的观测值≈9.616>6.635,所以在犯错误的概率不超过0.01的前提下认为“生育意愿与城市级别有关”.
7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.77x+52.9.
单价x(元) | 13 | 17 | 30 | 40 | 50 |
销量y(件) | 62 | ■ | 75 | 80 | 90 |
现发现表中有一个数据模糊看不清,请你推断出该数据的值为 73 .
解析:由已知可计算求出=30,而线性回归方程必过点(,),则=0.77×30+52.9=76,设模糊数字为a,则=76,计算得a=73.
8.(2019·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
| 几何题 | 代数题 | 总计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
根据上述数据,推断视觉和空间想象能力与性别有关系,则这种推断犯错误的概率不超过 0.025 .
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
解析:由列联表计算K2的观测值k=≈5.556>5.024,∴推断犯错误的概率不超过0.025.
9.(2019·安徽蚌埠段考)为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:
| 生产能手 | 非生产能手 | 总计 |
25周岁以上 | 25 | 35 | 60 |
25周岁以下 | 10 | 30 | 40 |
总计 | 35 | 65 | 100 |
有 90% 以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.
解析:由2×2列联表可知,K2=≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.
10.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x | 9 | 9.5 | m | 10.5 | 11 |
销售量y | 11 | n | 8 | 6 | 5 |
由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是=-3.2x+40,且m+n=20,则其中的n= 10 .
解析:==8+,==6+,回归直线一定经过样本点中心(,),即6+=-3.2+40,即3.2m+n=42.
又因为m+n=20,即解得故n=10.
11.(2019·重庆调研)某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:
| 满意 | 不满意 |
男用户 | 30 | 10 |
女用户 | 20 | 20 |
(1)根据上表,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
注:K2=,n=a+b+c+d.
解:(1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为=.
所以在满意产品的用户中应抽取女用户20×=2(人),男用户30×=3(人).
抽取的5人中,三名男用户记为a,b,c,两名女用户记为r,s,则从这5人中任选2人,共有10种情况:ab,ac,ar,as,bc,br,bs,cr,cs,rs.
其中恰好是男、女用户各1人的有6种情况:ar,as,br,bs,cr,cs.
故所求的概率为P==0.6.
(2)由题意,得K2的观测值为
k==≈5.333>5.024.
又P(K2≥5.024)=0.025.
故有97.5%的把握认为“产品用户是否满意与性别有关”.
12.(2016·全国卷Ⅲ)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1~7分别对应年份2008~2014.
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:i=9.32,iyi=40.17,
=0.55,≈2.646.
参考公式:相关系数r=,
回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=-.
解:(1)由折线图中数据和附注中参考数据得
=4,(ti-)2=28,=0.55,
(ti-)(yi-)=iyi- i=40.17-4×9.32=2.89,
r≈≈0.99.
因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.
(2)由=≈1.331及(1)得==≈0.10,
=- =1.331-0.10×4≈0.93.
所以y关于t的回归方程为
=0.93+0.10t.
将2016年对应的t=9代入回归方程得:=0.93+0.10×9=1.83.
所以预测2016年我国生活垃圾无害化处理量将约为1.83亿吨.
13.(2019·湖南张家界一模)已知变量x,y之间的线性回归方程为=-0.7x+10.3,且变量x,y之间的一组相关数据如下表所示,则下列说法错误的是( C )
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A.变量x,y之间呈负相关关系
B.可以预测,当x=20时,=-3.7
C.m=4
D.该回归直线必过点(9,4)
解析:由-0.7<0,得变量x,y之间呈负相关关系,故A正确;当x=20时,=-0.7×20+10.3=-3.7,故B正确;由表格数据可知=×(6+8+10+12)=9,=(6+m+3+2)=,则=-0.7×9+10.3,解得m=5,故C错;由m=5,得==4,所以该回归直线必过点(9,4),故D正确.故选C.
14.(2019·湖南永州模拟)已知x与y之间的几组数据如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
假设根据上表数据所得的线性回归方程为=x+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( C )
A.>b′,>a′ B.>b′,<a′
C.<b′,>a′ D.<b′,<a′
解析:由两组数据(1,0)和(2,2)可求得直线方程为y=2x-2,b′=2,a′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得==
=,=-=-×=-,
所以<b′,>a′.
15.(2019·青岛模拟)针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的,男生喜欢韩剧的人数占男生人数的,女生喜欢韩剧的人数占女生人数.若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有 12 人.
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
解析:设男生人数为x,由题意可得列联表如下:
| 喜欢韩剧 | 不喜欢韩剧 | 总计 |
男生 | x | ||
女生 | |||
总计 | x |
若有95%的把握认为是否喜欢韩剧和性别有关,
则k>3.841,
即k==>3.841,
解得x>10.243.
因为,为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有12人.
16.(2019·包头一模)如图是某企业2010年至2016年的污水净化量(单位:吨)的折线图.
注:年份代码1~7分别对应年份2010~2016.
(1)由折线图看出,可用线性回归模型拟合y和t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程,预测2017年该企业的污水净化量;
(3)请用数据说明回归方程预报的效果.
参考数据:=54,(ti-)(yi-)=21,≈3.74,
(yi-i)2=.
参考公式:相关系数r=,
线性回归方程=+t,=,=-.
反映回归效果的公式为:R2=1-,其中R2越接近于1,表示回归的效果越好.
解:(1)由折线图中的数据得,
=4,(ti-)2=28,(yi-)2=18,
所以r=≈0.935.
因为y与t的相关系数近似为0.935,说明y与t的线性相关程度相当大,所以可以用线性回归模型拟合y与t的关系.
(2)因为=54,===,
所以=- =54-×4=51,
所以y关于t的线性回归方程为=t+=t+51.
将2017年对应的t=8代入得=×8+51=57,
所以预测2017年该企业污水净化量约为57吨.
(3)因为R2=1-=1-×=1-==0.875,
所以“污水净化量的差异”有87.5%是由年份引起的,这说明回归方程预报的效果是良好的.