还剩12页未读,
继续阅读
2020版高考一轮复习物理新课改省份专用学案:第七章第2节电场能的性质
展开
第2节 电场能的性质
一、电势能和电势
1.电势能
(1)电场力做功的特点:电场力做功与路径无关,只与初、末位置有关。[注1]
(2)电势能
①定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时电场力所做的功。[注2]
②电场力做功与电势能变化的关系:电场力做的功等于电势能的减少量,即WAB=EpA-EpB=-ΔEp。[注3]
2.电势
(1)定义:试探电荷在电场中某点具有的电势能与它的电荷量的比值。
(2)定义式:φ=。
(3)矢标性:电势是标量,有正、负之分,其正(负)表示该点电势比零电势高(低)。
(4)相对性:电势具有相对性,同一点的电势因选取零电势点的不同而不同。
3.等势面
(1)定义:电场中电势相等的各点组成的面。
(2)四个特点
①等势面一定与电场线垂直。
②在同一等势面上移动电荷时电场力不做功。
③电场线方向总是从电势的等势面指向电势的等势面。[注4]
④等差等势面越密的地方电场强度越大,反之越小。
二、电势差
1.定义:电荷在电场中由一点A移到另一点B时,电场力做功与移动电荷的电荷量的比值。
2.定义式:UAB=。[注5]
3.电势差与电势的关系:UAB=φA-φB,UAB=-UBA。
三、匀强电场中电势差与电场强度的关系
1.电势差与电场强度的关系:匀强电场中两点间的电势差等于电场强度与这两点沿电场线方向的距离的乘积。即U=Ed,也可以写作E=。
2.公式U=Ed的适用范围:匀强电场。
【注解释疑】
[注1] 电场力做功的特点与重力做功的特点类似。
[注2] 零势能位置的选取是任意的,但通常选取大地或无穷远处为零势能位置。
[注3] 电势能的变化特点与重力势能的变化特点类似。
[注4] 沿着电场线的方向,电势降低最快。
[注5] 推导过程为WAB=EpA-EpB=qφA-qφB=q(φA-φB)=qUAB
[深化理解]
1.在应用描述电势、电势能、电势差的公式时,q、W、U、Ep、φ都直接代入正负号进行运算,而应用描述电场力、电场强度的公式运算时可以不代入正负号。
2.在匀强电场中:
①同一直线上(直线与电场线可成任意角),相等距离的两点间电势差相等;
②相互平行的直线上任意相等距离的两点间电势差相等。
3.电势的高低与电场强度的大小没有联系。如等量异种点电荷连线上,从正电荷到负电荷电势一直降低,而电场强度先减小后增大;连线的中垂线是电势为零的等势面,而电场强度沿中垂线向外逐渐减小。
[基础自测]
一、判断题
(1)电场中电场强度为零的地方电势一定为零。(×)
(2)沿电场线方向电场强度越来越小,电势逐渐降低。(×)
(3)A、B两点间的电势差等于将正电荷从A点移到B点时静电力所做的功。(×)
(4)A、B两点的电势差是恒定的,所以UAB=UBA。(×)
(5)等差等势线越密的地方,电场线越密,电场强度越大。(√)
(6)电场中电势降低的方向,就是电场强度的方向。(×)
二、选择题
1.[沪科版选修3-1P34T1](多选)下列说法中正确的是( )
A.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越多,电荷在该点的电势能就越大
B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越少,电荷在该点的电势能越大
C.无论是正电荷还是负电荷,从无穷远处移到电场中某点时,克服电场力做功越多,电荷在该点的电势能越大
D.无论是正电荷还是负电荷,从无穷远处移到电场中某点时,电场力做功越多,电荷在该点的电势能越大
答案:AC
2.[教科版选修3-1P39T7]电荷量为q的电荷在电场中由A点移到B点时,电场力做功W,由此可算出两点间的电势差为U,若让电荷量为2q的电荷在电场中由A点移到B点,则( )
A.电场力做功仍为W
B.电场力做功为
C.两点间的电势差仍为U
D.两点间的电势差为
解析:选C 两点间电势差与移动的电荷无关,电场力做功变为W′=2qU=2W,只有C正确。
3.[人教版选修3-1P22T3改编]如图所示,实线为某电场的电场线,虚线表示该电场的等势面,A、B、C是电场中的三点,下列说法正确的是( )
A.三点中,B点的场强最大
B.三点中,A点的电势最高
C.将一带负电的检验电荷从A移动到B,电势能增大
D.将一带正电的检验电荷从A移动到B和从A移动到C,电势能的变化相同
解析:选D 电场线的疏密表示电场强度的大小,所以三点中,A点场强最大,A错误;沿电场线方向,电势逐渐降低,A点电势最低,B错误;将一带负电的检验电荷从A移动到B,电场力做正功,电势能减小,C错误;因为B、C两点在同一等势面上,所以将一带正电的检验电荷从A移动到B和从A移动到C,电场力做的功相同,电势能变化相同,D正确。
4.[沪科版选修3-1P38T2改编](多选)如图所示,M、N为电场中两个等势面,GH直线是其中的一条电场线,则下列说法中正确的是( )
A.EG<EH
B.正电荷置于G点时电势能大于置于H点时的电势能
C.φG<φH
D.负电荷由H点移动到G点时电场力做正功
答案:ABD
高考对本节内容的考查,主要集中在电势高低及电势能大小的比较、电势差与电场强度的关系、带电粒子在电场中的运动轨迹问题,主要以选择题的形式呈现,难度中等,而对电场力做功与电场中的功能关系的考查,常结合力学知识综合考查,难度较大。
考点一 电势高低及电势能大小的比较[基础自修类]
[题点全练]
1.[场强与电势的判断]
如图所示,一圆环上均匀分布着负电荷,x轴垂直于环面且过圆心O。下列关于x轴上的电场强度和电势的说法正确的是( )
A.从O点沿x轴正方向,电场强度先增大后减小,电势一直降低
B.从O点沿x轴正方向,电场强度先增大后减小,电势先降低后升高
C.O点的电场强度为零,电势最低
D.O点的电场强度不为零,电势最高
解析:选C 圆环上均匀分布着负电荷,根据对称性可知,圆环上各电荷在O点产生的场强相互抵消,合场强为零。圆环上各电荷在x轴产生的电场强度有水平向左的分量,根据电场的叠加原理可知,x轴上电场强度方向向左,根据顺着电场线方向电势降低,可知,从O点沿x轴正方向,电势升高。O点的场强为零,无穷远处场强也为零,所以从O点沿x轴正方向,场强应先增大后减小。综上分析可知C正确,A、B、D错误。
2.[电势与电势能的判断]
如图所示,真空中有等量异种点电荷+q、-q分别放置在M、N两点,在MN的连线上有对称点a、c,MN连线的中垂线上有对称点b、d,下列说法正确的是( )
A.在MN连线的中垂线上,O点电势最高
B.正电荷+q从b点沿MN连线的中垂线移到d点的过程中,受到的电场力先减小后增大
C.正电荷+q在c点电势能大于在a点电势能
D.正电荷+q在c点电势能小于在a点电势能
解析:选D 在MN连线的中垂线上各点的电势均为零,选项A错误;沿两电荷连线的中垂线从b点到d点,场强先增大后减小,故正电荷+q受到的电场力先增大后减小,选项B错误;因a点的电势高于c点,故正电荷+q在c点电势能小于在a点电势能,选项D正确,C错误。
3.[场强、电势、电势能的综合问题]
在真空中A、B两点分别放有异种点电荷-Q和+2Q,以A、B连线中点O为圆心作一圆形路径acbd,如图所示,下列说法正确的是( )
A.场强大小关系有Ea=Eb、Ec=Ed
B.电势高低关系有φa>φb、φc>φd
C.将一负点电荷沿圆弧由a运动到b的过程中电场力做正功
D.将一正点电荷沿直线由c运动到d的过程中电势能始终不变
解析:选C 对比等量异种点电荷的电场分布可知,题图中场强大小关系有Eb>Ea,Ec=Ed,选项A错误;因沿着电场线方向电势逐渐降低,可知φa<φb,再由对称性可知φc=φd,选项B错误;由于a点电势低于b点电势,将负点电荷由a沿圆弧运动到b,电场力做正功,选项C正确;因沿直线由c到d过程中电势先升高再降低,所以将一正点电荷沿直线由c运动到d的过程中电势能先增大再减小,选项D错误。
[名师微点]
1.电势高低的判断
判断依据
判断方法
电场线方向
沿电场线方向电势逐渐降低
场源电荷的正负
取无穷远处电势为零,正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低
电势能的高低
正电荷在电势较高处电势能大,负电荷在电势较低处电势能大
电场力做功
根据UAB=,将WAB、q的正负号代入,由UAB的正负判断φA、φB的高低
2.电势能大小的判断
判断方法
方法解读
公式法
将电荷量、电势连同正负号一起代入公式Ep=qφ,正Ep的绝对值越大,电势能越大;负Ep的绝对值越大,电势能越小
电势法
正电荷在电势高的地方电势能大
负电荷在电势低的地方电势能大
做功法
电场力做正功,电势能减小
电场力做负功,电势能增加
能量守恒法
在电场中,若只有电场力做功时,电荷的动能和电势能相互转化,动能增加,电势能减小,反之,动能减小,电势能增加
考点二 电势差与电场强度的关系[多维探究类]
1.匀强电场中电势差与电场强度的关系
(1)UAB=Ed,d为A、B两点沿电场方向的距离。
(2)沿电场强度方向电势降落得最快。
(3)在匀强电场中U=Ed,即在沿电场线方向上,U∝d。推论如下:
推论①:如图甲,C点为线段AB的中点,则有φC=。
推论②:如图乙,AB∥CD,且AB=CD,则UAB=UCD。
2.E=在非匀强电场中的三点妙用
(1)判断电势差的大小及电势的高低:距离相等的两点间的电势差,E越大,U越大,进而判断电势的高低。
(2)利用φ x图像的斜率判断电场强度随位置变化的规律:k===Ex,斜率的大小表示电场强度的大小,正负表示电场强度的方向。
(3)判断电场强度大小:等差等势面越密,电场强度越大。
考法(一) 利用E=定性分析
[例1] (多选)如下列选项所示,A、B、C是匀强电场中平行于电场线的某一平面上的三个点,各点的电势分别为φA=5 V,φB=2 V,φC=3 V,H、F三等分AB,G为AC的中点,则能正确表示该电场强度方向的是( )
[解析] 匀强电场中将任一线段等分,则电势差等分。把AB等分为三段,AB间电势差为3 V,则每等份电势差为1 V,H点电势为4 V,F点电势为3 V,将F、C相连,则FC为等势线,电场线垂直于FC,从高电势指向低电势,C正确;把A、C相连,分为两份,AC间电势差为2 V,则G点电势为4 V,GH为等势线,电场线垂直于GH,从高电势指向低电势,B正确。
[答案] BC
考法(二) 利用E=定量计算
[例2] (多选)(2017·全国卷Ⅲ)一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图所示,
三点的电势分别为10 V、17 V、26 V。下列说法正确的是( )
A.电场强度的大小为2.5 V/cm
B.坐标原点处的电势为1 V
C.电子在a点的电势能比在b点的低7 eV
D.电子从b点运动到c点,电场力做功为9 eV
[解析] ac垂直于bc,沿ca和cb两方向的场强分量大小分别为E1==2 V/cm、E2==1.5 V/cm,根据矢量合成可知E=2.5 V/cm,A项正确;根据在匀强电场中平行线上等距同向的两点间的电势差相等,有φO-φa=φb-φc,得φO=1 V,B项正确;电子在a、b、c三点的电势能分别为-10 eV、-17 eV和-26 eV,故电子在a点的电势能比在b点的高7 eV,C项错误;电子从b点运动到c点,电场力做功W=(-17 eV)-(-26 eV)=9 eV,D项正确。
[答案] ABD
[题点全练]
1.[定量计算]
如图所示,水平面内有A、B、C、D、M、N六个点,它们均匀分布在半径为R=2 cm的同一圆周上,空间有一方向与圆平面平行的匀强电场。已知A、C、M三点的电势分别为φA=(2-)V、φC=2 V、φM=(2+)V,下列判断正确的是( )
A.电场强度的方向由A指向D
B.电场强度的大小为1 V/m
C.该圆周上的点电势最高为4 V
D.沿圆周将电子从D点经M点移到N点,电场力先做负功后做正功
解析:选C 在匀强电场中AM连线的中点G的电势φG=(φA+φM)=2 V=φC,所以直线COGN为等势线,在匀强电场中等势线相互平行,电场线与等势线相互垂直,且由电势高的等势线指向电势低的等势线,可知直线AB、直线DM分别为等势线,直线DB、直线MA分别为电场线,可知电场强度的方向由M指向A(或由D指向B),故A错误;MA两点间的电势差UMA=φM-φA=2 V,沿电场方向的距离d=R= m,电场强度E==100 V/m,故B错误;过圆心O做MA的平行线,与圆的交点H处电势最高,UHO=E·R=2 V,由UHO=φH-φO可得:最高电势φH=UHO+φO=4 V,故C正确;沿圆周将电子从D点经M点移到N点,电场力先做正功再做负功,故D错误。
2.[定性分析]
如图所示,在某电场中画出了三条电场线,C点是A、B连线的中点。已知A点的电势为φA=30 V,B点的电势为φB=-10 V,则C点的电势( )
A.φC=10 V B.φC>10 V
C.φC<10 V D.上述选项都不正确
解析:选C 由于AC之间的电场线比CB之间的电场线密,相等距离之间的电势差较大,即UAC>UCB,所以φA-φC>φC-φB,可得φC<,即φC<10 V,选项C正确。
考点三 电场线、等势线(面)及带电粒子的运动轨迹问题[基础自修类]
[题点全练]
1.[电场线与运动轨迹]
(多选)(2017·天津高考)如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹。设电子在A、B两点的加速度大小分别为aA、aB,电势能分别为EpA、EpB。下列说法正确的是( )
A.电子一定从A向B运动
B.若aA>aB,则Q靠近M端且为正电荷
C.无论Q为正电荷还是负电荷一定有EpA
D.B点电势可能高于A点电势
解析:选BC 若Q在M端,由电子运动的轨迹可知Q为正电荷,电子从A向B运动或从B向A运动均可,由于rAEB,FA>FB,aA>aB,φA>φB,EpArB,故φA>φB,EpA
2.[匀强电场中的等势面与运动轨迹]
(多选)(2018·全国卷Ⅰ)图中虚线a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面b上的电势为2 V。一电子经过a时的动能为10 eV,从a到d的过程中克服电场力所做的功为6 eV。下列说法正确的是( )
A.平面c上的电势为零
B.该电子可能到达不了平面f
C.该电子经过平面d时,其电势能为4 eV
D.该电子经过平面b时的速率是经过d时的2倍
解析:选AB 因等势面间距相等,由U=Ed得相邻虚线之间电势差相等,由a到d,eUad=-6 eV,故Uad=6 V;因电场力做负功,故电场方向向右,沿电场线方向电势降低,又φb=2 V,则φc=0,各虚线电势如图所示,故A正确。因电子的速度方向未知,若不垂直于等势面,如图中实线所示,电子可能到达不了平面f,故B正确。电子经过平面d时,电势能Ep=eφd=2 eV,故C错误。由a到b,Wab=Ekb-Eka=-2 eV,所以Ekb=8 eV;由a到d,Wad=Ekd-Eka=-6 eV,所以Ekd=4 eV;则Ekb=2Ekd,根据Ek=mv2知vb=vd,故D错误。
3.[点电荷电场中的等势面与运动轨迹]
(2016·全国卷Ⅱ)如图,P是固定的点电荷,虚线是以P为圆心的两个圆。带电粒子Q在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点。若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为aa、ab、ac,速度大小分别为va、vb、vc。则( )
A.aa>ab>ac,va>vc>vb
B.aa>ab>ac,vb>vc>va
C.ab>ac>aa,vb>vc>va
D.ab>ac>aa,va>vc>vb
解析:选D a、b、c三点到固定的点电荷P的距离rb<rc<ra,则三点的电场强度由E=k可知Eb>Ec>Ea,故带电粒子Q在这三点的加速度ab>ac>aa。由运动轨迹可知带电粒子Q所受P的电场力为斥力,从a到b电场力做负功,由动能定理-|qUab|=mvb2-mva2<0,则vb<va,从b到c电场力做正功,由动能定理|qUbc|=mvc2-mvb2>0,vc>vb,又|Uab|>|Ubc|,则va>vc,故va>vc>vb,选项D正确。
[名师微点]
1.几种典型电场的等势线(面)
电场
等势线(面)
重要描述
匀强电场
垂直于电场线的一簇平面
点电荷的电场
以点电荷为球心的一簇球面
等量异种点电荷的电场
连线的中垂线上电势处处为零
等量同种(正)点电荷的电场
两点电荷连线上,中点的电势最低;中垂线上,中点的电势最高
2.带电粒子在电场中运动轨迹问题的分析方法
(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负。
(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等。
(3)根据动能定理或能量守恒定律判断动能的变化情况。
考点四 电场力做功与功能关系[师生共研类]
电场力做功的计算
电场中的功能关系
(1)电场力做正功,电势能减少,电场力做负功,电势能增加,即:W=-ΔEp。
(2)如果只有电场力做功,则动能和电势能之间相互转化,二者总和不变,即:ΔEk=-ΔEp。
[典例] (多选)如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平。a、b是两个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽运动经过P点到达某点Q(图中未画出)时速度为零。则小球a( )
A.从N到Q的过程中,重力与库仑力的合力先增大后减小
B.从N到P的过程中,速率先增大后减小
C.从N到Q的过程中,电势能一直增加
D.从P到Q的过程中,动能减少量小于电势能增加量
[解析] 小球a从N点静止释放,过P点后到Q点速度为零,整个运动过程只有重力和库仑力做功,库仑力方向与小球a速度方向夹角一直大于90°,所以库仑力整个过程做负功。小球a从N到Q的过程中,库仑力增大,库仑力与重力的夹角从90°一直减小,所以它们的合力一直增大,故A错误。带电小球a受力如图所示,在靠近N点的位置,合力与速度夹角小于90°,在P点合力与速度夹角大于90°,所以小球a从N到P的过程中,速率应先增大后减小,故B正确。从N到Q的过程中,库仑力一直做负功,所以电势能一直增加,故C正确。根据能量守恒定律可知,P到Q的过程中,动能的减少量等于重力势能和电势能的增加量之和,故D错误。
[答案] BC
[延伸思考]
(1)在[典例]中小球a从N到Q的过程中机械能守恒吗?
(2)在[典例]中,若把b球固定在圆心O点(其他条件不变),小球a从N点静止释放,小球a到达何处时的速度为零?在此过程中机械能守恒吗?为什么?
提示:(1)机械能不守恒。
(2)小球a到达M点时速度为零,在此过程中机械能守恒,因为库仑力、轨道的支持力都不做功。
例题及相关延伸思考旨在让考生理解在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律,有时也会用到功能关系。
(1)动能定理―→合外力的功(或总功)。
(2)能量守恒定律―→电势能与其他形式能之间的转化。
(3)功能关系―→电场力做功与电势能变化之间的关系。
(4)有电场力做功的过程机械能一般不守恒,但机械能与电势能的总和可以不变。
[题点全练]
1.[带电小球在电场中的匀变速直线运动]
(多选)如图所示,一质量为m、电荷量为q的小球在电场强度为E的匀强电场中,以初速度v0沿直线ON做匀变速运动,直线ON与水平面的夹角为30°。若小球在初始位置的电势能为零,重力加速度为g,且mg=Eq,则( )
A.电场方向竖直向上
B.小球运动的加速度大小为g
C.小球上升的最大高度为
D.小球电势能的最大值为
解析:选BD 因为小球做匀变速直线运动,则小球所受的合力与速度方向在同一条直线上,结合平行四边形定则知,电场力的方向与水平方向夹角为30°,斜向上,如图所示,A错误;根据平行四边形定则知,小球所受的重力和电场力相等,两个力的夹角为120°,所以合力大小与分力大小相等,等于mg,根据牛顿第二定律知,小球运动的加速度大小为g,B正确;小球斜向上做匀减速直线运动,匀减速直线运动的位移s==,则小球上升的最大高度h=s·sin 30°=,C错误;在整个过程中电场力做功W=qEscos 120°=-mv02,电势能增加,所以小球电势能的最大值为,D正确。
2.[物块在电场力、摩擦力共同作用下的运动]
在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C,方向与x轴正方向相同。在O点处放一个带电荷量q=-5.0×10-8 C,质量m=1.0×10-2 kg的绝缘物块。物块与水平面间的动摩擦因数μ=0.20,沿x轴正方向给物块一个初速度v0=2.0 m/s,如图所示。(g取10 m/s2)试求:
(1)物块向右运动的最大距离;
(2)物块最终停止的位置。
解析:(1)设物块向右运动的最大距离为xm,由动能定理得-μmgxm-E|q|xm=0-mv02
可求得xm=0.4 m。
(2)因Eq>μmg,物块不可能停止在O点右侧,设物块最终停在O点左侧且离O点为x处。
由动能定理得E|q|xm-μmg(xm+x)=0,可得x=0.2 m。
答案:(1)0.4 m (2)O点左侧0.2 m处
“融会贯通”归纳好——静电场中的三类常考图像问题
(一) φx图像
(1)φx图线上某点切线的斜率的绝对值表示电场强度的大小,φx图线存在极值,其切线的斜率为零,则对应位置处电场强度为零。
(2)在φx图像中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向。
(3)在φx图像中分析电荷移动时电势能的变化,可用WAB=qUAB,进而分析WAB的正负,然后作出判断。
[例1] 在坐标-x0到x0之间有一静电场,x轴上各点的电势φ随坐标x的变化关系如图所示,一电荷量为e的质子从-x0处以一定初动能仅在电场力作用下沿x轴正向穿过该电场区域。则该质子( )
A.在-x0~0区间一直做加速运动
B.在0~x0区间受到的电场力一直减小
C.在-x0~0区间电势能一直减小
D.在-x0~0区间电势能一直增加
[解析] 从-x0到0,电势逐渐升高,意味着该区域内的场强方向向左,质子受到的电场力向左,与运动方向相反,所以质子做减速运动,A错误;设在x~x+Δx,电势为φ~φ+Δφ,根据场强与电势差的关系式E=,当Δx无限趋近于零时,表示x处的场强大小(即φx图线的斜率),从0到x0区间,图线的斜率先增加后减小,所以电场强度先增大后减小,根据F=Ee,质子受到的电场力先增大后减小,B错误;在-x0~0区间质子受到的电场力方向向左,与运动方向相反,电场力做负功,电势能增加,C错误,D正确。
[答案] D
(二) Epx图像
(1)根据电势能的变化可以判断电场力做功的正负,电势能减少,电场力做正功;电势能增加,电场力做负功。
(2)根据ΔEp=-W=-Fx,图像Epx斜率的绝对值表示电场力的大小。
[例2] (多选)一带负电的粒子只在电场力作用下沿x轴正方向运动,其电势能Ep随位移x的变化关系如图所示,则下列说法正确的是( )
A.粒子从x1处运动到x2处的过程中电场力做正功
B.x1、x2处电场强度方向沿x轴正方向
C.x1处的电场强度大小大于x2处的电场强度大小
D.x1处的电势比x2处的电势低
[解析] 由于粒子从x1运动到x2电势能减小,因此电场力做正功,粒子所受电场力的方向沿x轴正方向,电场强度方向沿x轴负方向,选项A正确,B错误;由|ΔEp|=|qEΔx|,即|qE|=,由于x1处的图线斜率的绝对值小于x2处图线斜率的绝对值,因此x1处的电场强度大小小于x2处的电场强度大小,选项C错误;沿着电场线方向电势降低,故x1处的电势比x2处的电势低,选项D正确。
[答案] AD
(三) Ex图像
在给定了电场的Ex图像后,可以由图线确定电场强度的变化情况,E>0表示场强沿正方向,E<0表示场强沿负方向;Ex图线与x轴所围成的面积表示电势差,如果取x=0处为电势零点,则可由图像的面积分析各点电势的高低,综合分析粒子的运动,进一步确定粒子的电性、电场力做功及粒子的动能变化、电势能变化等情况。
[例3] (多选)某静电场中x轴上电场强度E随x变化的关系如图所示,设x轴正方向为电场强度的正方向。一带电荷量大小为q的粒子从坐标原点O沿x轴正方向运动,结果粒子刚好能运动到x=3x0处,假设粒子仅受电场力作用,E0和x0已知,下列说法正确的是( )
A.粒子一定带负电
B.粒子的初动能大小为qE0x0
C.粒子沿x轴正方向运动过程中电势能先增大后减小
D.粒子沿x轴正方向运动过程中最大动能为2qE0x0
[解析] 如果粒子带负电,粒子在电场中一定先做减速运动后做加速运动,因此粒子在x=3x0处的速度不可能为零,故粒子一定带正电,A错误;根据动能定理qE0x0-×2qE0·2x0=0-Ek0,可得Ek0=qE0x0,B正确;粒子向右运动的过程中,电场力先做正功后做负功,因此电势能先减小后增大,C错误;粒子运动到x0处动能最大,根据动能定理qE0x0=Ekmax-Ek0,解得Ekmax=2qE0x0,D正确。
[答案] BD
[共性归纳]
对于电场中的各类图像问题,无论是哪类图像,其根本还是准确视图,分析图像的物理意义。
(1)结合物理公式规律明确图像的斜率表示什么,斜率的正负代表什么,图像与横轴所夹面积是否有意义。
(2)灵活应用电场中的功能关系,结合分析粒子的运动,进一步可分析粒子的电性、做功情况、动能变化、电势能变化等问题。
一、电势能和电势
1.电势能
(1)电场力做功的特点:电场力做功与路径无关,只与初、末位置有关。[注1]
(2)电势能
①定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时电场力所做的功。[注2]
②电场力做功与电势能变化的关系:电场力做的功等于电势能的减少量,即WAB=EpA-EpB=-ΔEp。[注3]
2.电势
(1)定义:试探电荷在电场中某点具有的电势能与它的电荷量的比值。
(2)定义式:φ=。
(3)矢标性:电势是标量,有正、负之分,其正(负)表示该点电势比零电势高(低)。
(4)相对性:电势具有相对性,同一点的电势因选取零电势点的不同而不同。
3.等势面
(1)定义:电场中电势相等的各点组成的面。
(2)四个特点
①等势面一定与电场线垂直。
②在同一等势面上移动电荷时电场力不做功。
③电场线方向总是从电势的等势面指向电势的等势面。[注4]
④等差等势面越密的地方电场强度越大,反之越小。
二、电势差
1.定义:电荷在电场中由一点A移到另一点B时,电场力做功与移动电荷的电荷量的比值。
2.定义式:UAB=。[注5]
3.电势差与电势的关系:UAB=φA-φB,UAB=-UBA。
三、匀强电场中电势差与电场强度的关系
1.电势差与电场强度的关系:匀强电场中两点间的电势差等于电场强度与这两点沿电场线方向的距离的乘积。即U=Ed,也可以写作E=。
2.公式U=Ed的适用范围:匀强电场。
【注解释疑】
[注1] 电场力做功的特点与重力做功的特点类似。
[注2] 零势能位置的选取是任意的,但通常选取大地或无穷远处为零势能位置。
[注3] 电势能的变化特点与重力势能的变化特点类似。
[注4] 沿着电场线的方向,电势降低最快。
[注5] 推导过程为WAB=EpA-EpB=qφA-qφB=q(φA-φB)=qUAB
[深化理解]
1.在应用描述电势、电势能、电势差的公式时,q、W、U、Ep、φ都直接代入正负号进行运算,而应用描述电场力、电场强度的公式运算时可以不代入正负号。
2.在匀强电场中:
①同一直线上(直线与电场线可成任意角),相等距离的两点间电势差相等;
②相互平行的直线上任意相等距离的两点间电势差相等。
3.电势的高低与电场强度的大小没有联系。如等量异种点电荷连线上,从正电荷到负电荷电势一直降低,而电场强度先减小后增大;连线的中垂线是电势为零的等势面,而电场强度沿中垂线向外逐渐减小。
[基础自测]
一、判断题
(1)电场中电场强度为零的地方电势一定为零。(×)
(2)沿电场线方向电场强度越来越小,电势逐渐降低。(×)
(3)A、B两点间的电势差等于将正电荷从A点移到B点时静电力所做的功。(×)
(4)A、B两点的电势差是恒定的,所以UAB=UBA。(×)
(5)等差等势线越密的地方,电场线越密,电场强度越大。(√)
(6)电场中电势降低的方向,就是电场强度的方向。(×)
二、选择题
1.[沪科版选修3-1P34T1](多选)下列说法中正确的是( )
A.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越多,电荷在该点的电势能就越大
B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越少,电荷在该点的电势能越大
C.无论是正电荷还是负电荷,从无穷远处移到电场中某点时,克服电场力做功越多,电荷在该点的电势能越大
D.无论是正电荷还是负电荷,从无穷远处移到电场中某点时,电场力做功越多,电荷在该点的电势能越大
答案:AC
2.[教科版选修3-1P39T7]电荷量为q的电荷在电场中由A点移到B点时,电场力做功W,由此可算出两点间的电势差为U,若让电荷量为2q的电荷在电场中由A点移到B点,则( )
A.电场力做功仍为W
B.电场力做功为
C.两点间的电势差仍为U
D.两点间的电势差为
解析:选C 两点间电势差与移动的电荷无关,电场力做功变为W′=2qU=2W,只有C正确。
3.[人教版选修3-1P22T3改编]如图所示,实线为某电场的电场线,虚线表示该电场的等势面,A、B、C是电场中的三点,下列说法正确的是( )
A.三点中,B点的场强最大
B.三点中,A点的电势最高
C.将一带负电的检验电荷从A移动到B,电势能增大
D.将一带正电的检验电荷从A移动到B和从A移动到C,电势能的变化相同
解析:选D 电场线的疏密表示电场强度的大小,所以三点中,A点场强最大,A错误;沿电场线方向,电势逐渐降低,A点电势最低,B错误;将一带负电的检验电荷从A移动到B,电场力做正功,电势能减小,C错误;因为B、C两点在同一等势面上,所以将一带正电的检验电荷从A移动到B和从A移动到C,电场力做的功相同,电势能变化相同,D正确。
4.[沪科版选修3-1P38T2改编](多选)如图所示,M、N为电场中两个等势面,GH直线是其中的一条电场线,则下列说法中正确的是( )
A.EG<EH
B.正电荷置于G点时电势能大于置于H点时的电势能
C.φG<φH
D.负电荷由H点移动到G点时电场力做正功
答案:ABD
高考对本节内容的考查,主要集中在电势高低及电势能大小的比较、电势差与电场强度的关系、带电粒子在电场中的运动轨迹问题,主要以选择题的形式呈现,难度中等,而对电场力做功与电场中的功能关系的考查,常结合力学知识综合考查,难度较大。
考点一 电势高低及电势能大小的比较[基础自修类]
[题点全练]
1.[场强与电势的判断]
如图所示,一圆环上均匀分布着负电荷,x轴垂直于环面且过圆心O。下列关于x轴上的电场强度和电势的说法正确的是( )
A.从O点沿x轴正方向,电场强度先增大后减小,电势一直降低
B.从O点沿x轴正方向,电场强度先增大后减小,电势先降低后升高
C.O点的电场强度为零,电势最低
D.O点的电场强度不为零,电势最高
解析:选C 圆环上均匀分布着负电荷,根据对称性可知,圆环上各电荷在O点产生的场强相互抵消,合场强为零。圆环上各电荷在x轴产生的电场强度有水平向左的分量,根据电场的叠加原理可知,x轴上电场强度方向向左,根据顺着电场线方向电势降低,可知,从O点沿x轴正方向,电势升高。O点的场强为零,无穷远处场强也为零,所以从O点沿x轴正方向,场强应先增大后减小。综上分析可知C正确,A、B、D错误。
2.[电势与电势能的判断]
如图所示,真空中有等量异种点电荷+q、-q分别放置在M、N两点,在MN的连线上有对称点a、c,MN连线的中垂线上有对称点b、d,下列说法正确的是( )
A.在MN连线的中垂线上,O点电势最高
B.正电荷+q从b点沿MN连线的中垂线移到d点的过程中,受到的电场力先减小后增大
C.正电荷+q在c点电势能大于在a点电势能
D.正电荷+q在c点电势能小于在a点电势能
解析:选D 在MN连线的中垂线上各点的电势均为零,选项A错误;沿两电荷连线的中垂线从b点到d点,场强先增大后减小,故正电荷+q受到的电场力先增大后减小,选项B错误;因a点的电势高于c点,故正电荷+q在c点电势能小于在a点电势能,选项D正确,C错误。
3.[场强、电势、电势能的综合问题]
在真空中A、B两点分别放有异种点电荷-Q和+2Q,以A、B连线中点O为圆心作一圆形路径acbd,如图所示,下列说法正确的是( )
A.场强大小关系有Ea=Eb、Ec=Ed
B.电势高低关系有φa>φb、φc>φd
C.将一负点电荷沿圆弧由a运动到b的过程中电场力做正功
D.将一正点电荷沿直线由c运动到d的过程中电势能始终不变
解析:选C 对比等量异种点电荷的电场分布可知,题图中场强大小关系有Eb>Ea,Ec=Ed,选项A错误;因沿着电场线方向电势逐渐降低,可知φa<φb,再由对称性可知φc=φd,选项B错误;由于a点电势低于b点电势,将负点电荷由a沿圆弧运动到b,电场力做正功,选项C正确;因沿直线由c到d过程中电势先升高再降低,所以将一正点电荷沿直线由c运动到d的过程中电势能先增大再减小,选项D错误。
[名师微点]
1.电势高低的判断
判断依据
判断方法
电场线方向
沿电场线方向电势逐渐降低
场源电荷的正负
取无穷远处电势为零,正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低
电势能的高低
正电荷在电势较高处电势能大,负电荷在电势较低处电势能大
电场力做功
根据UAB=,将WAB、q的正负号代入,由UAB的正负判断φA、φB的高低
2.电势能大小的判断
判断方法
方法解读
公式法
将电荷量、电势连同正负号一起代入公式Ep=qφ,正Ep的绝对值越大,电势能越大;负Ep的绝对值越大,电势能越小
电势法
正电荷在电势高的地方电势能大
负电荷在电势低的地方电势能大
做功法
电场力做正功,电势能减小
电场力做负功,电势能增加
能量守恒法
在电场中,若只有电场力做功时,电荷的动能和电势能相互转化,动能增加,电势能减小,反之,动能减小,电势能增加
考点二 电势差与电场强度的关系[多维探究类]
1.匀强电场中电势差与电场强度的关系
(1)UAB=Ed,d为A、B两点沿电场方向的距离。
(2)沿电场强度方向电势降落得最快。
(3)在匀强电场中U=Ed,即在沿电场线方向上,U∝d。推论如下:
推论①:如图甲,C点为线段AB的中点,则有φC=。
推论②:如图乙,AB∥CD,且AB=CD,则UAB=UCD。
2.E=在非匀强电场中的三点妙用
(1)判断电势差的大小及电势的高低:距离相等的两点间的电势差,E越大,U越大,进而判断电势的高低。
(2)利用φ x图像的斜率判断电场强度随位置变化的规律:k===Ex,斜率的大小表示电场强度的大小,正负表示电场强度的方向。
(3)判断电场强度大小:等差等势面越密,电场强度越大。
考法(一) 利用E=定性分析
[例1] (多选)如下列选项所示,A、B、C是匀强电场中平行于电场线的某一平面上的三个点,各点的电势分别为φA=5 V,φB=2 V,φC=3 V,H、F三等分AB,G为AC的中点,则能正确表示该电场强度方向的是( )
[解析] 匀强电场中将任一线段等分,则电势差等分。把AB等分为三段,AB间电势差为3 V,则每等份电势差为1 V,H点电势为4 V,F点电势为3 V,将F、C相连,则FC为等势线,电场线垂直于FC,从高电势指向低电势,C正确;把A、C相连,分为两份,AC间电势差为2 V,则G点电势为4 V,GH为等势线,电场线垂直于GH,从高电势指向低电势,B正确。
[答案] BC
考法(二) 利用E=定量计算
[例2] (多选)(2017·全国卷Ⅲ)一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图所示,
三点的电势分别为10 V、17 V、26 V。下列说法正确的是( )
A.电场强度的大小为2.5 V/cm
B.坐标原点处的电势为1 V
C.电子在a点的电势能比在b点的低7 eV
D.电子从b点运动到c点,电场力做功为9 eV
[解析] ac垂直于bc,沿ca和cb两方向的场强分量大小分别为E1==2 V/cm、E2==1.5 V/cm,根据矢量合成可知E=2.5 V/cm,A项正确;根据在匀强电场中平行线上等距同向的两点间的电势差相等,有φO-φa=φb-φc,得φO=1 V,B项正确;电子在a、b、c三点的电势能分别为-10 eV、-17 eV和-26 eV,故电子在a点的电势能比在b点的高7 eV,C项错误;电子从b点运动到c点,电场力做功W=(-17 eV)-(-26 eV)=9 eV,D项正确。
[答案] ABD
[题点全练]
1.[定量计算]
如图所示,水平面内有A、B、C、D、M、N六个点,它们均匀分布在半径为R=2 cm的同一圆周上,空间有一方向与圆平面平行的匀强电场。已知A、C、M三点的电势分别为φA=(2-)V、φC=2 V、φM=(2+)V,下列判断正确的是( )
A.电场强度的方向由A指向D
B.电场强度的大小为1 V/m
C.该圆周上的点电势最高为4 V
D.沿圆周将电子从D点经M点移到N点,电场力先做负功后做正功
解析:选C 在匀强电场中AM连线的中点G的电势φG=(φA+φM)=2 V=φC,所以直线COGN为等势线,在匀强电场中等势线相互平行,电场线与等势线相互垂直,且由电势高的等势线指向电势低的等势线,可知直线AB、直线DM分别为等势线,直线DB、直线MA分别为电场线,可知电场强度的方向由M指向A(或由D指向B),故A错误;MA两点间的电势差UMA=φM-φA=2 V,沿电场方向的距离d=R= m,电场强度E==100 V/m,故B错误;过圆心O做MA的平行线,与圆的交点H处电势最高,UHO=E·R=2 V,由UHO=φH-φO可得:最高电势φH=UHO+φO=4 V,故C正确;沿圆周将电子从D点经M点移到N点,电场力先做正功再做负功,故D错误。
2.[定性分析]
如图所示,在某电场中画出了三条电场线,C点是A、B连线的中点。已知A点的电势为φA=30 V,B点的电势为φB=-10 V,则C点的电势( )
A.φC=10 V B.φC>10 V
C.φC<10 V D.上述选项都不正确
解析:选C 由于AC之间的电场线比CB之间的电场线密,相等距离之间的电势差较大,即UAC>UCB,所以φA-φC>φC-φB,可得φC<,即φC<10 V,选项C正确。
考点三 电场线、等势线(面)及带电粒子的运动轨迹问题[基础自修类]
[题点全练]
1.[电场线与运动轨迹]
(多选)(2017·天津高考)如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹。设电子在A、B两点的加速度大小分别为aA、aB,电势能分别为EpA、EpB。下列说法正确的是( )
A.电子一定从A向B运动
B.若aA>aB,则Q靠近M端且为正电荷
C.无论Q为正电荷还是负电荷一定有EpA
解析:选BC 若Q在M端,由电子运动的轨迹可知Q为正电荷,电子从A向B运动或从B向A运动均可,由于rA
(多选)(2018·全国卷Ⅰ)图中虚线a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面b上的电势为2 V。一电子经过a时的动能为10 eV,从a到d的过程中克服电场力所做的功为6 eV。下列说法正确的是( )
A.平面c上的电势为零
B.该电子可能到达不了平面f
C.该电子经过平面d时,其电势能为4 eV
D.该电子经过平面b时的速率是经过d时的2倍
解析:选AB 因等势面间距相等,由U=Ed得相邻虚线之间电势差相等,由a到d,eUad=-6 eV,故Uad=6 V;因电场力做负功,故电场方向向右,沿电场线方向电势降低,又φb=2 V,则φc=0,各虚线电势如图所示,故A正确。因电子的速度方向未知,若不垂直于等势面,如图中实线所示,电子可能到达不了平面f,故B正确。电子经过平面d时,电势能Ep=eφd=2 eV,故C错误。由a到b,Wab=Ekb-Eka=-2 eV,所以Ekb=8 eV;由a到d,Wad=Ekd-Eka=-6 eV,所以Ekd=4 eV;则Ekb=2Ekd,根据Ek=mv2知vb=vd,故D错误。
3.[点电荷电场中的等势面与运动轨迹]
(2016·全国卷Ⅱ)如图,P是固定的点电荷,虚线是以P为圆心的两个圆。带电粒子Q在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点。若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为aa、ab、ac,速度大小分别为va、vb、vc。则( )
A.aa>ab>ac,va>vc>vb
B.aa>ab>ac,vb>vc>va
C.ab>ac>aa,vb>vc>va
D.ab>ac>aa,va>vc>vb
解析:选D a、b、c三点到固定的点电荷P的距离rb<rc<ra,则三点的电场强度由E=k可知Eb>Ec>Ea,故带电粒子Q在这三点的加速度ab>ac>aa。由运动轨迹可知带电粒子Q所受P的电场力为斥力,从a到b电场力做负功,由动能定理-|qUab|=mvb2-mva2<0,则vb<va,从b到c电场力做正功,由动能定理|qUbc|=mvc2-mvb2>0,vc>vb,又|Uab|>|Ubc|,则va>vc,故va>vc>vb,选项D正确。
[名师微点]
1.几种典型电场的等势线(面)
电场
等势线(面)
重要描述
匀强电场
垂直于电场线的一簇平面
点电荷的电场
以点电荷为球心的一簇球面
等量异种点电荷的电场
连线的中垂线上电势处处为零
等量同种(正)点电荷的电场
两点电荷连线上,中点的电势最低;中垂线上,中点的电势最高
2.带电粒子在电场中运动轨迹问题的分析方法
(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负。
(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等。
(3)根据动能定理或能量守恒定律判断动能的变化情况。
考点四 电场力做功与功能关系[师生共研类]
电场力做功的计算
电场中的功能关系
(1)电场力做正功,电势能减少,电场力做负功,电势能增加,即:W=-ΔEp。
(2)如果只有电场力做功,则动能和电势能之间相互转化,二者总和不变,即:ΔEk=-ΔEp。
[典例] (多选)如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平。a、b是两个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽运动经过P点到达某点Q(图中未画出)时速度为零。则小球a( )
A.从N到Q的过程中,重力与库仑力的合力先增大后减小
B.从N到P的过程中,速率先增大后减小
C.从N到Q的过程中,电势能一直增加
D.从P到Q的过程中,动能减少量小于电势能增加量
[解析] 小球a从N点静止释放,过P点后到Q点速度为零,整个运动过程只有重力和库仑力做功,库仑力方向与小球a速度方向夹角一直大于90°,所以库仑力整个过程做负功。小球a从N到Q的过程中,库仑力增大,库仑力与重力的夹角从90°一直减小,所以它们的合力一直增大,故A错误。带电小球a受力如图所示,在靠近N点的位置,合力与速度夹角小于90°,在P点合力与速度夹角大于90°,所以小球a从N到P的过程中,速率应先增大后减小,故B正确。从N到Q的过程中,库仑力一直做负功,所以电势能一直增加,故C正确。根据能量守恒定律可知,P到Q的过程中,动能的减少量等于重力势能和电势能的增加量之和,故D错误。
[答案] BC
[延伸思考]
(1)在[典例]中小球a从N到Q的过程中机械能守恒吗?
(2)在[典例]中,若把b球固定在圆心O点(其他条件不变),小球a从N点静止释放,小球a到达何处时的速度为零?在此过程中机械能守恒吗?为什么?
提示:(1)机械能不守恒。
(2)小球a到达M点时速度为零,在此过程中机械能守恒,因为库仑力、轨道的支持力都不做功。
例题及相关延伸思考旨在让考生理解在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律,有时也会用到功能关系。
(1)动能定理―→合外力的功(或总功)。
(2)能量守恒定律―→电势能与其他形式能之间的转化。
(3)功能关系―→电场力做功与电势能变化之间的关系。
(4)有电场力做功的过程机械能一般不守恒,但机械能与电势能的总和可以不变。
[题点全练]
1.[带电小球在电场中的匀变速直线运动]
(多选)如图所示,一质量为m、电荷量为q的小球在电场强度为E的匀强电场中,以初速度v0沿直线ON做匀变速运动,直线ON与水平面的夹角为30°。若小球在初始位置的电势能为零,重力加速度为g,且mg=Eq,则( )
A.电场方向竖直向上
B.小球运动的加速度大小为g
C.小球上升的最大高度为
D.小球电势能的最大值为
解析:选BD 因为小球做匀变速直线运动,则小球所受的合力与速度方向在同一条直线上,结合平行四边形定则知,电场力的方向与水平方向夹角为30°,斜向上,如图所示,A错误;根据平行四边形定则知,小球所受的重力和电场力相等,两个力的夹角为120°,所以合力大小与分力大小相等,等于mg,根据牛顿第二定律知,小球运动的加速度大小为g,B正确;小球斜向上做匀减速直线运动,匀减速直线运动的位移s==,则小球上升的最大高度h=s·sin 30°=,C错误;在整个过程中电场力做功W=qEscos 120°=-mv02,电势能增加,所以小球电势能的最大值为,D正确。
2.[物块在电场力、摩擦力共同作用下的运动]
在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C,方向与x轴正方向相同。在O点处放一个带电荷量q=-5.0×10-8 C,质量m=1.0×10-2 kg的绝缘物块。物块与水平面间的动摩擦因数μ=0.20,沿x轴正方向给物块一个初速度v0=2.0 m/s,如图所示。(g取10 m/s2)试求:
(1)物块向右运动的最大距离;
(2)物块最终停止的位置。
解析:(1)设物块向右运动的最大距离为xm,由动能定理得-μmgxm-E|q|xm=0-mv02
可求得xm=0.4 m。
(2)因Eq>μmg,物块不可能停止在O点右侧,设物块最终停在O点左侧且离O点为x处。
由动能定理得E|q|xm-μmg(xm+x)=0,可得x=0.2 m。
答案:(1)0.4 m (2)O点左侧0.2 m处
“融会贯通”归纳好——静电场中的三类常考图像问题
(一) φx图像
(1)φx图线上某点切线的斜率的绝对值表示电场强度的大小,φx图线存在极值,其切线的斜率为零,则对应位置处电场强度为零。
(2)在φx图像中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向。
(3)在φx图像中分析电荷移动时电势能的变化,可用WAB=qUAB,进而分析WAB的正负,然后作出判断。
[例1] 在坐标-x0到x0之间有一静电场,x轴上各点的电势φ随坐标x的变化关系如图所示,一电荷量为e的质子从-x0处以一定初动能仅在电场力作用下沿x轴正向穿过该电场区域。则该质子( )
A.在-x0~0区间一直做加速运动
B.在0~x0区间受到的电场力一直减小
C.在-x0~0区间电势能一直减小
D.在-x0~0区间电势能一直增加
[解析] 从-x0到0,电势逐渐升高,意味着该区域内的场强方向向左,质子受到的电场力向左,与运动方向相反,所以质子做减速运动,A错误;设在x~x+Δx,电势为φ~φ+Δφ,根据场强与电势差的关系式E=,当Δx无限趋近于零时,表示x处的场强大小(即φx图线的斜率),从0到x0区间,图线的斜率先增加后减小,所以电场强度先增大后减小,根据F=Ee,质子受到的电场力先增大后减小,B错误;在-x0~0区间质子受到的电场力方向向左,与运动方向相反,电场力做负功,电势能增加,C错误,D正确。
[答案] D
(二) Epx图像
(1)根据电势能的变化可以判断电场力做功的正负,电势能减少,电场力做正功;电势能增加,电场力做负功。
(2)根据ΔEp=-W=-Fx,图像Epx斜率的绝对值表示电场力的大小。
[例2] (多选)一带负电的粒子只在电场力作用下沿x轴正方向运动,其电势能Ep随位移x的变化关系如图所示,则下列说法正确的是( )
A.粒子从x1处运动到x2处的过程中电场力做正功
B.x1、x2处电场强度方向沿x轴正方向
C.x1处的电场强度大小大于x2处的电场强度大小
D.x1处的电势比x2处的电势低
[解析] 由于粒子从x1运动到x2电势能减小,因此电场力做正功,粒子所受电场力的方向沿x轴正方向,电场强度方向沿x轴负方向,选项A正确,B错误;由|ΔEp|=|qEΔx|,即|qE|=,由于x1处的图线斜率的绝对值小于x2处图线斜率的绝对值,因此x1处的电场强度大小小于x2处的电场强度大小,选项C错误;沿着电场线方向电势降低,故x1处的电势比x2处的电势低,选项D正确。
[答案] AD
(三) Ex图像
在给定了电场的Ex图像后,可以由图线确定电场强度的变化情况,E>0表示场强沿正方向,E<0表示场强沿负方向;Ex图线与x轴所围成的面积表示电势差,如果取x=0处为电势零点,则可由图像的面积分析各点电势的高低,综合分析粒子的运动,进一步确定粒子的电性、电场力做功及粒子的动能变化、电势能变化等情况。
[例3] (多选)某静电场中x轴上电场强度E随x变化的关系如图所示,设x轴正方向为电场强度的正方向。一带电荷量大小为q的粒子从坐标原点O沿x轴正方向运动,结果粒子刚好能运动到x=3x0处,假设粒子仅受电场力作用,E0和x0已知,下列说法正确的是( )
A.粒子一定带负电
B.粒子的初动能大小为qE0x0
C.粒子沿x轴正方向运动过程中电势能先增大后减小
D.粒子沿x轴正方向运动过程中最大动能为2qE0x0
[解析] 如果粒子带负电,粒子在电场中一定先做减速运动后做加速运动,因此粒子在x=3x0处的速度不可能为零,故粒子一定带正电,A错误;根据动能定理qE0x0-×2qE0·2x0=0-Ek0,可得Ek0=qE0x0,B正确;粒子向右运动的过程中,电场力先做正功后做负功,因此电势能先减小后增大,C错误;粒子运动到x0处动能最大,根据动能定理qE0x0=Ekmax-Ek0,解得Ekmax=2qE0x0,D正确。
[答案] BD
[共性归纳]
对于电场中的各类图像问题,无论是哪类图像,其根本还是准确视图,分析图像的物理意义。
(1)结合物理公式规律明确图像的斜率表示什么,斜率的正负代表什么,图像与横轴所夹面积是否有意义。
(2)灵活应用电场中的功能关系,结合分析粒子的运动,进一步可分析粒子的电性、做功情况、动能变化、电势能变化等问题。
相关资料
更多