2020高考数学(理)新创新大一轮复习通用版讲义:第一章第二节 命题及其关系、充分条件与必要条件
展开
第二节 命题及其关系、充分条件与必要条件
1.理解命题的概念.
2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
3.理解必要条件、充分条件与充要条件的含义.
突破点一 命题及其关系
1.命题的概念
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
2.四种命题及相互关系
3.四种命题的真假关系
(1)若两个命题互为逆否命题,则它们有相同的真假性;
(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.
一、判断题(对的打“√”,错的打“×”)
(1)“x2+2x-81”的逆否命题
[解析] (1)命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2|y|,则x>y”,是真命题,故A正确;命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,是假命题,故B错误;命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,是假命题,故C错误;命题“若x2>0,则x>1”的逆否命题为“若x≤1,则x2≤0”,是假命题,故D错误.选A.
[答案] (1)D (2)A
[方法技巧]
四种命题的关系及真假判断
(1)判断关系时,先分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,注意四种命题间关系的相对性.
(2)命题真假的判断方法
①直接判断法:若判断一个命题为真,需经过严格的推理证明;若说明为假,只需举一反例.
②间接判断法:转化成等价命题,再判断.
1.命题“若α=,则tan α=1”的逆否命题是( )
A.若α≠,则tan α≠1
B.若α=,则tan α≠1
C.若tan α≠1,则α≠
D.若tan α≠1,则α=
解析:选C 否定原命题的结论作条件,否定原命题的条件作结论所得的命题为逆否命题,可知C正确.
2.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
解析:选B 因为原命题为真,所以它的逆否命题为真;若|z1|=|z2|,当z1=1,z2= -1时,这两个复数不是共轭复数,所以原命题的逆命题为假,故否命题也为假.故选B.
3.定义“正对数”:ln+x=现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a;
②若a>0,b>0,则ln+(ab)=ln+a+ln+b;
③若a>0,b>0,则ln+≥ln+a-ln+b;
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln 2.
其中的真命题有________(写出所有真命题的编号).
解析:对于①,当a≥1时,ab≥1,
则ln+(ab)=ln ab=bln a=bln+a;
当00,y>0.
所以“lg x+lg y=0”成立,xy=1必成立,
反之无法得到x>0,y>0.
因此“xy=1”是“lg x+lg y=0”的必要不充分条件.
答案:必要不充分
4.设p,r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件(用“充分不必要”“必要不充分”“充要”填空).
解析:由题知p⇒q⇔s⇒t,又t⇒r,r⇒q,故p是t的充分不必要条件,r是t的充要条件.
答案:充分不必要 充要
考法一 充分条件与必要条件的判断
[例1] (1)(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
(2)(2018·天津高考)设x∈R,则“<”是“x3<1”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
[解析] (1)a,b,c,d是非零实数,若a0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.
(2)由<,得0<x<1,则0<x3<1,
即“<”⇒“x3<1”;
由x3<1,得x<1,当x≤0时,≥,
即“x3<1” “<”.
所以“<”是“x3<1”的充分而不必要条件.
[答案] (1)B (2)A
[方法技巧] 充分、必要条件的判断方法
利用定义判断
直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件是什么、结论是什么
从集合的角度判断
利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题
利用等价转化法
条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假
考法二 根据充分、必要条件求参数范围
[例2] (2019·大庆质检)已知p:x≤1+m,q:|x-4|≤6.若p是q的必要不充分条件,则m的取值范围是( )
A.(-∞,-1] B.(-∞,9]
C.[1,9] D.[9,+∞)
[解析] 由|x-4|≤6,解得-2≤x≤10,因为p是q的必要不充分条件,所以m+1≥10,解得m≥9.故选D.
[答案] D
[方法技巧]
根据充分、必要条件求参数范围的思路方法
(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.
(2)求解参数的取值范围时, 一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.
1.已知m,n为两个非零向量,则“m·n1”是“3a>2a”的充分不必要条件,故选A.
5.已知下列三个命题:
①若一个球的半径缩小到原来的,则其体积缩小到原来的;
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2=相切.
其中真命题的序号为( )
A.①②③ B.①②
C.①③ D.②③
解析:选C 对于命题①,设球的半径为R,则π3=·πR3,故体积缩小到原来的,命题正确;
对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;
对于命题③,圆x2+y2=的圆心(0,0)到直线x+y+1=0的距离d==,等于圆的半径,所以直线与圆相切,命题正确.
6.(2019·咸阳模拟)已知p∶m=-1,q:直线x-y=0与直线x+m2y=0互相垂直,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 由题意得直线x+m2y=0的斜率是-1,所以=-1,m=±1.
所以p是q的充分不必要条件.故选A.
7.(2019·重庆调研)定义在R上的可导函数f(x),其导函数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B ∵f(x)为奇函数,∴f(-x)=-f(x).∴[f(-x)]′=[-f(x)]′=-f′(x), ∴f′(-x)=f′(x),即f′(x)为偶函数;反之,若f′(x)为偶函数,如f′(x)=3x2,f(x)=x3+1满足条件,但f(x)不是奇函数,所以“f′(x)为偶函数”是“f(x)为奇函数”的必要不充分条件.故选B.
8.(2019·抚州七校联考)A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )
A.若及格分不低于70分,则A,B,C都及格
B.若A,B,C都及格,则及格分不低于70分
C.若A,B,C至少有一人及格,则及格分不低于70分
D.若A,B,C至少有一人及格,则及格分高于70分
解析:选C 根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.故选C.
9.(2019·济南模拟)原命题:“a,b为两个实数,若a+b≥2,则a,b中至少有一个不小于1”,下列说法错误的是( )
A.逆命题为:a,b为两个实数,若a,b中至少有一个不小于1,则a+b≥2,为假命题
B.否命题为:a,b为两个实数,若a+b