还剩9页未读,
继续阅读
2020版高考数学(文)新创新一轮复习通用版讲义:第十二章第一节 合情推理与演绎推理
展开
第十二章推理与证明、算法、复数
第一节 合情推理与演绎推理
[考纲要求]
1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.
2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异.
3.掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.
突破点一 合情推理
类型
定义
特点
归纳推理
根据某类事物的部分对象具有某种特征,推出这类事物的全部对象都具有这种特征的推理
由部分到整体、由个别到一般
类比推理
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理
由特殊到特殊
一、判断题(对的打“√”,错的打“×”)
(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( )
(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )
(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )
答案:(1)× (2)√ (3)×
二、填空题
1.已知数列{an}中,a1=1,n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是an=________.
解析:a1=1,a2=4,a3=9,a4=16,猜想an=n2.
答案:n2
2.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.
答案:1∶8
3.(2018·咸阳二模)观察下列式子:<2,+<,++<8,+++<,…,根据以上规律,第n(n∈N*)个不等式是________________________________________________________________________.
解析:根据所给不等式可得第n个不等式是++…+<(n∈N*).
答案:++…+<
考法一 归纳推理
[例1] (1)(2019·郑州模拟)平面内凸四边形有2条对角线,凸五边形有5条对角线,依次类推,凸十三边形的对角线条数为( )
A.42 B.65
C.143 D.169
(2)(2019·兰州实战性考试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2+…+n+…+2+1=________.
[解析] (1)根据题设条件可以通过列表归纳分析得到:
凸多边形
四
五
六
七
八
对角线条数
2
2+3
2+3+4
2+3+4+5
2+3+4+5+6
所以凸n边形有2+3+4+…+(n-2)=条对角线,所以凸十三边形的对角线条数为=65,故选B.
(2)由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n+…+2+1=n2.
[答案] (1)B (2)n2
[方法技巧]
归纳推理问题的常见类型及解题策略
常见类型
解题策略
与数字有关的等式的推理
观察数字特点,找出等式左右两侧的规律及符号可解
与式子有关的推理
观察每个式子的特点,找到规律后可解
与图形变化有关的推理
合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性
考法二 类比推理
1.类比推理的应用一般分为类比定义、类比性质和类比方法,常用技巧如下:
类比定义
在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解
类比性质
从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键
类比方法
有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移
2.平面中常见的元素与空间中元素的类比:
平面
点
线
圆
三角形
角
面积
周长
…
空间
线
面
球
三棱锥
二面角
体积
表面积
…
[例2] (1)(2019·宜春中学期中)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间中可以得到类似结论:已知正四面体PABC的内切球体积为V1,外接球体积为V2,则=( )
A. B.
C. D.
(2)(2019·沙市中学月考)“求方程x+x=1的解”有如下解题思路:设f(x)=x+x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,不等式x6-(x+2)>(x+2)3-x2的解集是________________.
[解析] (1)从平面图形类比到空间图形,从二维类比到三维,可得到如下结论:正四面体的内切球与外接球半径之比为,所以正四面体的内切球的体积V1与外接球的体积V2之比=3=,故选B.
(2)不等式x6-(x+2)>(x+2)3-x2变形为x6+x2>(x+2)3+(x+2),
令u=x2,v=x+2,
则x6+x2>(x+2)3+(x+2)转化为u3+u>v3+v.
设f(x)=x3+x,知f(x)在R上为增函数,
∴由f(u)>f(v),得u>v.
不等式x6+x2>(x+2)3+(x+2)可化为x2>x+2,
解得x<-1或x>2.
∴所求解集为(-∞,-1)∪(2,+∞).
[答案] (1)B (2)(-∞,-1)∪(2,+∞)
[方法技巧]
类比推理的步骤和关键
(1)类比推理是由特殊到特殊的推理,其一般步骤为:
①找出两类事物之间的相似性或一致性;
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.
1.如图,一个树形图依据下列规律不断生长,1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点,则第11行的实心圆点的个数是( )
A.21 B.34
C.55 D.89
解析:选C 根据1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点知,第1行的实心圆点的个数是0;第2行的实心圆点的个数是1;第3行的实心圆点的个数是1=0+1;第4行的实心圆点的个数是2=1+1;第5行的实心圆点的个数是3=1+2;第6行的实心圆点的个数是5=2+3;第7行的实心圆点的个数是8=3+5;第8行的实心圆点的个数是13=5+8;第9行的实心圆点的个数是21=8+13;第10行的实心圆点的个数是34=13+21;第11行的实心圆点的个数是55=21+34.故选C.
2.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+=x求得x=.类比上述过程,则 =( )
A.3 B.
C.6 D.2
解析:选A 令 =m(m>0),
则两边平方得,则3+2=m2,
即3+2m=m2,解得m=3或m=-1(舍去).
3.某地区发生7.0级地震,为抗震救灾,地震后需搭建简易帐篷,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.
解析:由题意可知,图①的单顶帐篷要(17+0×11)根钢管,图②的帐篷要(17+1×11)根钢管,图③的帐篷要(17+2×11)根钢管,……所以串7顶这样的帐篷需要17+6×11=83(根)钢管.
答案:83
4.“MN是经过椭圆+=1(a>b>0)的焦点的任一弦,若过椭圆中心O的半弦OP⊥MN,则+=+.”类比椭圆的性质,可得“MN是经过双曲线-=1(a>0,b>0)的焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥MN,则____________________.”
解析:因为在椭圆中,+=+,在双曲线中,和变为差,所以类比结果应是-=-.
答案:-=-
突破点二 演绎推理
1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
2.模式:“三段论”是演绎推理的一般模式,包括:
(1)大前提——已知的一般原理;
(2)小前提——所研究的特殊情况;
(3)结论——根据一般原理,对特殊情况做出的判断.
3.特点:演绎推理是由一般到特殊的推理.
一、判断题(对的打“√”,错的打“×”)
(1)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( )
(2)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )
答案:(1)√ (2)×
二、填空题
1.推理“①矩形是平行四边形;②三角形不是矩形;③所以三角形不是平行四边形”中的小前提是________(填序号).
答案:②
2.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三个去过同一城市.
由此判断乙去过的城市为________.
答案:A
[典例] 数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n∈N*).证明:
(1)数列是等比数列;
(2)Sn+1=4an.
[证明] (1)∵an+1=Sn+1-Sn,an+1=Sn,
∴(n+2)Sn=n(Sn+1-Sn),
即nSn+1=2(n+1)Sn.
故=2·,(小前提)
故是以1为首项,2为公比的等比数列.(结论)
(大前提是等比数列的定义)
(2)由(1)可知=4·(n≥2),
∴Sn+1=4(n+1)·=4··Sn-1
=4an(n≥2).(小前提)
又∵a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)
∴对于任意正整数n,都有Sn+1=4an.(结论)
[方法技巧]
演绎推理的推理过程中的2个注意点
(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.
(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.
[针对训练]
1.“因为指数函数y=ax(a>0且a≠1)是增函数(大前提),又y=x是指数函数(小前提),所以函数y=x是增函数(结论)”,上面推理的错误在于( )
A.大前提错误导致结论错
B.小前提错误导致结论错
C.推理形式错误导致结论错
D.大前提和小前提错误导致结论错
解析:选A 当a>1时,y=ax为增函数;当0<a<1时,y=ax为减函数,故大前提错误.
2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.
证明:设x1,x2∈R,取x1<x2,
则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),
∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,
即[f(x2)-f(x1)](x2-x1)>0,
∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).
∴y=f(x)为R上的单调增函数.
[课时跟踪检测]
1.(2019·广东珠海一中、惠州一中联考)因为四边形ABCD为矩形,所以四边形ABCD的对角线相等,补充以上推理的大前提为( )
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形
解析:选B 用三段论的形式推导一个结论成立,大前提应该是结论成立的依据,因为由四边形ABCD为矩形,得到四边形ABCD的对角线相等的结论,所以大前提一定是矩形的对角线相等.故选B.
2.(2019·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )
A.甲 B.乙
C.丙 D.丁
解析:选B 由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.
3.(2019·南昌调研)已知13+23=32,13+23+33=62,13+23+33+43=102,…,若13+23+33+43+…+n3=3 025,则n=( )
A.8 B.9
C.10 D.11
解析:选C ∵13+23=32=(1+2)2,
13+23+33=62=(1+2+3)2,
13+23+33+43=102=(1+2+3+4)2,
……
∴13+23+33+…+n3=(1+2+3+…+n)2=.
∵13+23+33+43+…+n3=3 025,
∴=3 025,∴n2(n+1)2=(2×55)2,
∴n(n+1)=110,解得n=10.
4.(2019·武汉外国语学校月考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名,比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )
A.甲 B.乙
C.丙 D.丁
解析:选D 如果1号或2号选手得第一名,则乙、丙、丁对,如果3号选手得第一名,则只有丁对,如果4号或5号选手得第一名,则甲、乙都对,如果6号选手得第一名,则乙、丙都对.因此只有丁猜对,故选D.
5.(2019·辽宁实验中学等五校期末)如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若====k,则h1+2h2+3h3+4h4=.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若====K,则H1+2H2+3H3+4H4等于( )
A. B.
C. D.
解析:选C 类比,得H1+2H2+3H3+4H4=,证明如下:连接Q与三棱锥的四个顶点,将原三棱锥分成四个小三棱锥,其体积和为V,即V1+V2+V3+V4=V,即(S1H1+S2H2+S3H3+S4H4)=V.又由====K,得S1=K,S2=2K,S3=3K,S4=4K,则(H1+2H2+3H3+4H4)=V,即H1+2H2+3H3+4H4=,故选C.
6.(2019·大连模拟)“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )
A.男护士 B.女护士
C.男医生 D.女医生
解析:选A 设女护士人数为a,男护士人数为b,女医生人数为c,男医生人数为d,则所以d>a>b>c≥1.a+b+c+d=13,经检验得仅有a=4,b=3,c=1,d=5符合条件.因为无论是否把这位说话人计算在内,都满足条件,所以这位说话人是男护士.
7.(2019·成都七中期中)如图,第n个图形是由正(n+2)边形“扩展”而来的,n∈N*,则在第n个图形中共有____________个顶点.(用n表示)
解析:第n个图形是在第(n+2)边形的基础上每条边加上n+2个顶点,因此顶点个数为(n+2)+(n+2)(n+2)=(n+2)(n+3).
答案:(n+2)(n+3)
8.对于实数x,[x]表示不超过x的最大整数,观察下列等式:
[ ]+[ ]+[ ]=3,
[ ]+[ ]+[ ]+[ ]+[ ]=10,
[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
……
按照此规律第n个等式的等号右边的结果为________.
解析:因为[ ]+[ ]+[ ]=1×3,[ ]+[ ]+[ ]+[ ]+[ ]=2×5,[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=3×7,……,以此类推,第n个等式的等号右边的结果为n(2n+1),即2n2+n.
答案:2n2+n
9.(2019·石家庄模拟)观察下列式子:1+<,1++<,1+++<,…,根据上述规律,第n个不等式可能为________________________________________________________________________.
解析:1+<,1++<,1+++<,…,根据上述规律,第n个不等式的左端是n+1项的和1+++…+,右端分母依次是2,3,4,…,n+1,分子依次是3,5,7,…,2n+1,故第n个不等式为1+++…+<.
答案:1+++…+<
10.(2019·长春质检)有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.
解析:根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日,8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师生日为8月4日.
答案:8月4日
11.(2019·台州中学期中)如图,正方形ABCD的边长为1,分别作边AB,BC,CD,DA上的三等分点A1,B1,C1,D1,得正方形A1B1C1D1,再分别取边A1B1,B1C1,C1D1,D1A1上的三等分点A2,B2,C2,D2,得正方形A2B2C2D2,如此继续下去,得正方形A3B3C3D3,…,则正方形AnBnCnDn的面积为________.
解析:设正方形A1B1C1D1的面积为S1,∵AB=1,∴A1B=,BB1=,∴A1B1=,=2=,∴相邻的两正方形的面积比为,所有正方形面积构成等比数列,公比为,首项为1,∴正方形AnBnCnDn的面积为n.
答案:n
12.观察下列等式:
1+2+3+…+n=n(n+1);
1+3+6+…+n(n+1)=n(n+1)(n+2);
1+4+10+…+n(n+1)(n+2)=n(n+1)(n+2)·(n+3);
……
可以推测,1+5+15+…+n(n+1)(n+2)(n+3)=________________________________.
解析:根据式子中的规律可知,等式右侧为·n(n+1)(n+2)(n+3)(n+4)=n(n+1)(n+2)(n+3)·(n+4).
答案:n(n+1)(n+2)(n+3)(n+4)
13.给出下面的数表序列:
表1 表2 表3
1 1 3 1 3 5 ….
4 4 8
12
其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).
解:表4为
1 3 5 7
4 8 12
12 20
32
它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.
14.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
解:(1)选择②式,计算如下:
sin215°+cos2 15°-sin15°cos 15°=1-sin 30°=1-=.
(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.
证明如下:
法一:sin2α+cos2(30°-α)-sin αcos(30°-α)
=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+ cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=.
法二:sin2α+cos2(30°-α)-sin αcos(30°-α)
=+-sin α(cos 30°cos α+sin 30°sin α)=-cos 2α++ (cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α=-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.
第一节 合情推理与演绎推理
[考纲要求]
1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.
2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异.
3.掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.
突破点一 合情推理
类型
定义
特点
归纳推理
根据某类事物的部分对象具有某种特征,推出这类事物的全部对象都具有这种特征的推理
由部分到整体、由个别到一般
类比推理
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理
由特殊到特殊
一、判断题(对的打“√”,错的打“×”)
(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( )
(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )
(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )
答案:(1)× (2)√ (3)×
二、填空题
1.已知数列{an}中,a1=1,n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是an=________.
解析:a1=1,a2=4,a3=9,a4=16,猜想an=n2.
答案:n2
2.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.
答案:1∶8
3.(2018·咸阳二模)观察下列式子:<2,+<,++<8,+++<,…,根据以上规律,第n(n∈N*)个不等式是________________________________________________________________________.
解析:根据所给不等式可得第n个不等式是++…+<(n∈N*).
答案:++…+<
考法一 归纳推理
[例1] (1)(2019·郑州模拟)平面内凸四边形有2条对角线,凸五边形有5条对角线,依次类推,凸十三边形的对角线条数为( )
A.42 B.65
C.143 D.169
(2)(2019·兰州实战性考试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2+…+n+…+2+1=________.
[解析] (1)根据题设条件可以通过列表归纳分析得到:
凸多边形
四
五
六
七
八
对角线条数
2
2+3
2+3+4
2+3+4+5
2+3+4+5+6
所以凸n边形有2+3+4+…+(n-2)=条对角线,所以凸十三边形的对角线条数为=65,故选B.
(2)由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n+…+2+1=n2.
[答案] (1)B (2)n2
[方法技巧]
归纳推理问题的常见类型及解题策略
常见类型
解题策略
与数字有关的等式的推理
观察数字特点,找出等式左右两侧的规律及符号可解
与式子有关的推理
观察每个式子的特点,找到规律后可解
与图形变化有关的推理
合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性
考法二 类比推理
1.类比推理的应用一般分为类比定义、类比性质和类比方法,常用技巧如下:
类比定义
在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解
类比性质
从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键
类比方法
有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移
2.平面中常见的元素与空间中元素的类比:
平面
点
线
圆
三角形
角
面积
周长
…
空间
线
面
球
三棱锥
二面角
体积
表面积
…
[例2] (1)(2019·宜春中学期中)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间中可以得到类似结论:已知正四面体PABC的内切球体积为V1,外接球体积为V2,则=( )
A. B.
C. D.
(2)(2019·沙市中学月考)“求方程x+x=1的解”有如下解题思路:设f(x)=x+x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,不等式x6-(x+2)>(x+2)3-x2的解集是________________.
[解析] (1)从平面图形类比到空间图形,从二维类比到三维,可得到如下结论:正四面体的内切球与外接球半径之比为,所以正四面体的内切球的体积V1与外接球的体积V2之比=3=,故选B.
(2)不等式x6-(x+2)>(x+2)3-x2变形为x6+x2>(x+2)3+(x+2),
令u=x2,v=x+2,
则x6+x2>(x+2)3+(x+2)转化为u3+u>v3+v.
设f(x)=x3+x,知f(x)在R上为增函数,
∴由f(u)>f(v),得u>v.
不等式x6+x2>(x+2)3+(x+2)可化为x2>x+2,
解得x<-1或x>2.
∴所求解集为(-∞,-1)∪(2,+∞).
[答案] (1)B (2)(-∞,-1)∪(2,+∞)
[方法技巧]
类比推理的步骤和关键
(1)类比推理是由特殊到特殊的推理,其一般步骤为:
①找出两类事物之间的相似性或一致性;
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.
1.如图,一个树形图依据下列规律不断生长,1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点,则第11行的实心圆点的个数是( )
A.21 B.34
C.55 D.89
解析:选C 根据1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点知,第1行的实心圆点的个数是0;第2行的实心圆点的个数是1;第3行的实心圆点的个数是1=0+1;第4行的实心圆点的个数是2=1+1;第5行的实心圆点的个数是3=1+2;第6行的实心圆点的个数是5=2+3;第7行的实心圆点的个数是8=3+5;第8行的实心圆点的个数是13=5+8;第9行的实心圆点的个数是21=8+13;第10行的实心圆点的个数是34=13+21;第11行的实心圆点的个数是55=21+34.故选C.
2.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+=x求得x=.类比上述过程,则 =( )
A.3 B.
C.6 D.2
解析:选A 令 =m(m>0),
则两边平方得,则3+2=m2,
即3+2m=m2,解得m=3或m=-1(舍去).
3.某地区发生7.0级地震,为抗震救灾,地震后需搭建简易帐篷,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.
解析:由题意可知,图①的单顶帐篷要(17+0×11)根钢管,图②的帐篷要(17+1×11)根钢管,图③的帐篷要(17+2×11)根钢管,……所以串7顶这样的帐篷需要17+6×11=83(根)钢管.
答案:83
4.“MN是经过椭圆+=1(a>b>0)的焦点的任一弦,若过椭圆中心O的半弦OP⊥MN,则+=+.”类比椭圆的性质,可得“MN是经过双曲线-=1(a>0,b>0)的焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥MN,则____________________.”
解析:因为在椭圆中,+=+,在双曲线中,和变为差,所以类比结果应是-=-.
答案:-=-
突破点二 演绎推理
1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
2.模式:“三段论”是演绎推理的一般模式,包括:
(1)大前提——已知的一般原理;
(2)小前提——所研究的特殊情况;
(3)结论——根据一般原理,对特殊情况做出的判断.
3.特点:演绎推理是由一般到特殊的推理.
一、判断题(对的打“√”,错的打“×”)
(1)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( )
(2)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )
答案:(1)√ (2)×
二、填空题
1.推理“①矩形是平行四边形;②三角形不是矩形;③所以三角形不是平行四边形”中的小前提是________(填序号).
答案:②
2.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三个去过同一城市.
由此判断乙去过的城市为________.
答案:A
[典例] 数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n∈N*).证明:
(1)数列是等比数列;
(2)Sn+1=4an.
[证明] (1)∵an+1=Sn+1-Sn,an+1=Sn,
∴(n+2)Sn=n(Sn+1-Sn),
即nSn+1=2(n+1)Sn.
故=2·,(小前提)
故是以1为首项,2为公比的等比数列.(结论)
(大前提是等比数列的定义)
(2)由(1)可知=4·(n≥2),
∴Sn+1=4(n+1)·=4··Sn-1
=4an(n≥2).(小前提)
又∵a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)
∴对于任意正整数n,都有Sn+1=4an.(结论)
[方法技巧]
演绎推理的推理过程中的2个注意点
(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.
(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.
[针对训练]
1.“因为指数函数y=ax(a>0且a≠1)是增函数(大前提),又y=x是指数函数(小前提),所以函数y=x是增函数(结论)”,上面推理的错误在于( )
A.大前提错误导致结论错
B.小前提错误导致结论错
C.推理形式错误导致结论错
D.大前提和小前提错误导致结论错
解析:选A 当a>1时,y=ax为增函数;当0<a<1时,y=ax为减函数,故大前提错误.
2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.
证明:设x1,x2∈R,取x1<x2,
则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),
∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,
即[f(x2)-f(x1)](x2-x1)>0,
∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).
∴y=f(x)为R上的单调增函数.
[课时跟踪检测]
1.(2019·广东珠海一中、惠州一中联考)因为四边形ABCD为矩形,所以四边形ABCD的对角线相等,补充以上推理的大前提为( )
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形
解析:选B 用三段论的形式推导一个结论成立,大前提应该是结论成立的依据,因为由四边形ABCD为矩形,得到四边形ABCD的对角线相等的结论,所以大前提一定是矩形的对角线相等.故选B.
2.(2019·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )
A.甲 B.乙
C.丙 D.丁
解析:选B 由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.
3.(2019·南昌调研)已知13+23=32,13+23+33=62,13+23+33+43=102,…,若13+23+33+43+…+n3=3 025,则n=( )
A.8 B.9
C.10 D.11
解析:选C ∵13+23=32=(1+2)2,
13+23+33=62=(1+2+3)2,
13+23+33+43=102=(1+2+3+4)2,
……
∴13+23+33+…+n3=(1+2+3+…+n)2=.
∵13+23+33+43+…+n3=3 025,
∴=3 025,∴n2(n+1)2=(2×55)2,
∴n(n+1)=110,解得n=10.
4.(2019·武汉外国语学校月考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名,比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )
A.甲 B.乙
C.丙 D.丁
解析:选D 如果1号或2号选手得第一名,则乙、丙、丁对,如果3号选手得第一名,则只有丁对,如果4号或5号选手得第一名,则甲、乙都对,如果6号选手得第一名,则乙、丙都对.因此只有丁猜对,故选D.
5.(2019·辽宁实验中学等五校期末)如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若====k,则h1+2h2+3h3+4h4=.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若====K,则H1+2H2+3H3+4H4等于( )
A. B.
C. D.
解析:选C 类比,得H1+2H2+3H3+4H4=,证明如下:连接Q与三棱锥的四个顶点,将原三棱锥分成四个小三棱锥,其体积和为V,即V1+V2+V3+V4=V,即(S1H1+S2H2+S3H3+S4H4)=V.又由====K,得S1=K,S2=2K,S3=3K,S4=4K,则(H1+2H2+3H3+4H4)=V,即H1+2H2+3H3+4H4=,故选C.
6.(2019·大连模拟)“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )
A.男护士 B.女护士
C.男医生 D.女医生
解析:选A 设女护士人数为a,男护士人数为b,女医生人数为c,男医生人数为d,则所以d>a>b>c≥1.a+b+c+d=13,经检验得仅有a=4,b=3,c=1,d=5符合条件.因为无论是否把这位说话人计算在内,都满足条件,所以这位说话人是男护士.
7.(2019·成都七中期中)如图,第n个图形是由正(n+2)边形“扩展”而来的,n∈N*,则在第n个图形中共有____________个顶点.(用n表示)
解析:第n个图形是在第(n+2)边形的基础上每条边加上n+2个顶点,因此顶点个数为(n+2)+(n+2)(n+2)=(n+2)(n+3).
答案:(n+2)(n+3)
8.对于实数x,[x]表示不超过x的最大整数,观察下列等式:
[ ]+[ ]+[ ]=3,
[ ]+[ ]+[ ]+[ ]+[ ]=10,
[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
……
按照此规律第n个等式的等号右边的结果为________.
解析:因为[ ]+[ ]+[ ]=1×3,[ ]+[ ]+[ ]+[ ]+[ ]=2×5,[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=3×7,……,以此类推,第n个等式的等号右边的结果为n(2n+1),即2n2+n.
答案:2n2+n
9.(2019·石家庄模拟)观察下列式子:1+<,1++<,1+++<,…,根据上述规律,第n个不等式可能为________________________________________________________________________.
解析:1+<,1++<,1+++<,…,根据上述规律,第n个不等式的左端是n+1项的和1+++…+,右端分母依次是2,3,4,…,n+1,分子依次是3,5,7,…,2n+1,故第n个不等式为1+++…+<.
答案:1+++…+<
10.(2019·长春质检)有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.
解析:根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日,8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师生日为8月4日.
答案:8月4日
11.(2019·台州中学期中)如图,正方形ABCD的边长为1,分别作边AB,BC,CD,DA上的三等分点A1,B1,C1,D1,得正方形A1B1C1D1,再分别取边A1B1,B1C1,C1D1,D1A1上的三等分点A2,B2,C2,D2,得正方形A2B2C2D2,如此继续下去,得正方形A3B3C3D3,…,则正方形AnBnCnDn的面积为________.
解析:设正方形A1B1C1D1的面积为S1,∵AB=1,∴A1B=,BB1=,∴A1B1=,=2=,∴相邻的两正方形的面积比为,所有正方形面积构成等比数列,公比为,首项为1,∴正方形AnBnCnDn的面积为n.
答案:n
12.观察下列等式:
1+2+3+…+n=n(n+1);
1+3+6+…+n(n+1)=n(n+1)(n+2);
1+4+10+…+n(n+1)(n+2)=n(n+1)(n+2)·(n+3);
……
可以推测,1+5+15+…+n(n+1)(n+2)(n+3)=________________________________.
解析:根据式子中的规律可知,等式右侧为·n(n+1)(n+2)(n+3)(n+4)=n(n+1)(n+2)(n+3)·(n+4).
答案:n(n+1)(n+2)(n+3)(n+4)
13.给出下面的数表序列:
表1 表2 表3
1 1 3 1 3 5 ….
4 4 8
12
其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).
解:表4为
1 3 5 7
4 8 12
12 20
32
它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.
14.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
解:(1)选择②式,计算如下:
sin215°+cos2 15°-sin15°cos 15°=1-sin 30°=1-=.
(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.
证明如下:
法一:sin2α+cos2(30°-α)-sin αcos(30°-α)
=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+ cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=.
法二:sin2α+cos2(30°-α)-sin αcos(30°-α)
=+-sin α(cos 30°cos α+sin 30°sin α)=-cos 2α++ (cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α=-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.
相关资料
更多