终身会员
搜索
    上传资料 赚现金

    2020版高考数学新设计一轮复习新课改省份专用讲义:第八章第二节两条直线的位置关系

    立即下载
    加入资料篮
    2020版高考数学新设计一轮复习新课改省份专用讲义:第八章第二节两条直线的位置关系第1页
    2020版高考数学新设计一轮复习新课改省份专用讲义:第八章第二节两条直线的位置关系第2页
    2020版高考数学新设计一轮复习新课改省份专用讲义:第八章第二节两条直线的位置关系第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考数学新设计一轮复习新课改省份专用讲义:第八章第二节两条直线的位置关系

    展开
    
    第二节两条直线的位置关系


    1.两条直线平行与垂直的判定
    (1)两条直线平行:
    ①对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.
    ②当直线l1,l2不重合且斜率都不存在时,l1∥l2.

    (2)两条直线垂直:
    ①如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔k1·k2=-1.
    ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1⊥l2.

    2.两条直线的交点的求法
    直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组的解.
    3.三种距离公式
    (1)P1(x1,y1),P2(x2,y2)两点之间的距离:|P1P2|=.
    (2)点P0(x0,y0)到直线l:Ax+By+C=0的距离:d=.
     
    (3)平行线Ax+By+C1=0与Ax+By+C2=0间距离:d= .
     

    [熟记常用结论]
    1.过定点P(x0,y0)的直线系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),还可以表示为y-y0=k(x-x0)和x=x0.
    2.平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).
    3.垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.
    4.过两条已知直线A1x+B1y+C1=0,A2x+B2y+C2=0交点的直线系方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0(不包括直线A2x+B2y+C2=0)和A2x+B2y+C2=0.
    5.点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).
    6.点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
    7.点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
    8.点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
    9.点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为(k+y,x-k).
    [小题查验基础]
    一、判断题(对的打“√”,错的打“×”)
    (1)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.(  )
    (2)如果直线l1与l2垂直,则它们的斜率之积一定等于-1.(  )
    (3)若两直线方程组成的方程组有唯一解,则两直线相交.(  )
    (4)点P(x0,y0)到直线y=kx+b的距离为.(  )
    (5)两平行直线2x-y+1=0,4x-2y+1=0间的距离是0.(  )
    答案:(1)× (2)× (3)√ (4)× (5)×
    二、选填题
    1.两条直线l1:2x+y-1=0和l2:x-2y+4=0的交点为(  )
    A.         B.
    C. D.
    解析:选B 解方程组得
    所以两直线的交点为.
    2.若直线ax+2y-1=0与直线2x-3y-1=0垂直,则a的值为(  )
    A.-3 B.-
    C.2 D.3
    解析:选D 直线ax+2y-1=0的斜率k1=-,直线2x-3y-1=0的斜率k2=,因为两直线垂直,所以-×=-1,解得a=3.
    3.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为(  )
    A.1 B.
    C. D.2
    解析:选B 由题意可知l1与l2平行,故l1与l2之间的距离d==,故选B.
    4.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a=________.
    解析:由题意得,=1,
    ∴|a+1|=,∵a>0,∴a=-1.
    答案:-1
    5.已知坐标平面内两点A(x,-x)和B,那么这两点之间距离的最小值是________.
    解析:由题意可得两点间的距离d== ≥,即最小值为.
    答案:


    [典例精析]
    (1)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是(  )
    A.1或3          B.1或5
    C.3或5 D.1或2
    (2)已知直线l1:mx+y+4=0和直线l2:(m+2)x-ny+1=0(m>0,n>0)互相垂直,则的取值范围为________.
    [解析] (1)由两直线平行得,当k-3=0时,两直线的方程分别为y=-1和y=,显然两直线平行.当k-3≠0时,由=≠,可得k=5.综上,k的值是3或5.
    (2)因为l1⊥l2,所以m(m+2)+1×(-n)=0,得n=m2+2m,因为m>0,所以==,则0<<,故的取值范围为.
    [答案] (1)C (2)
    [解题技法]
    1.已知两直线的斜率存在,判断两直线平行或垂直的方法
    (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;
    (2)两直线垂直⇔两直线的斜率之积等于-1.
    [提醒] 当直线斜率不确定时,要注意斜率不存在的情况.
    2.由一般式确定两直线位置关系的方法
    直线方程
    l1:A1x+B1y+C1=0(A+B≠0)
    l2:A2x+B2y+C2=0(A+B≠0)
    l1与l2平行的充要条件
    =≠(A2B2C2≠0)
    l1与l2垂直的充要条件
    A1A2+B1B2=0
    l1与l2相交的充要条件
    ≠(A2B2≠0)
    l1与l2重合的充要条件
    ==(A2B2C2≠0)
      [提醒] 在判断两直线的位置关系时,比例式与,的关系容易记住,在解答选择题、填空题时,建议多用比例式来解答.

    [过关训练]
    1.设不同直线l1:2x-my-1=0,l2:(m-1)x-y+1=0,则“m=2”是“l1∥l2”的(  )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分也不必要条件
    解析:选C 当m=2时,易知两直线平行,即充分性成立.
    当l1∥l2时,显然m≠0,从而有=m-1,
    解得m=2或m=-1,但当m=-1时,两直线重合,不符合要求,故必要性成立,故选C.
    2.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为(  )
    A.7 B.9
    C.11 D.-7
    解析:选A 由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,即m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,即t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,即n=7.

    [典例精析]
    (1)已知直线y=kx+2k+1与直线y=-x+2的交点位于第一象限,则实数k的取值范围是________.
    (2)若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则|PQ|的最小值为________.
    [解析] (1)由方程组解得
    ∴交点坐标为.
    又∵交点位于第一象限,∴
    解得-<k<.
    (2)因为=≠,所以两直线平行,
    将直线3x+4y-12=0化为6x+8y-24=0,
    由题意可知|PQ|的最小值为这两条平行直线间的距离,
    即=,所以|PQ|的最小值为.
    [答案] (1) (2)
    [解题技法]
    距离问题的常见题型及解题策略
    (1)求两点间的距离关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.
    (2)解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.
    (3)求两条平行线间的距离要先将直线方程中x,y的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.
    [过关训练]
    1.(2019·太原模拟)若直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)与原点之间的距离的最小值为(  )
    A.           B.
    C.2 D.2
    解析:选A 由解得x=1,y=2.把(1,2)代入mx+ny+5=0,可得m+2n+5=0,∴m=-5-2n.∴点(m,n)与原点之间的距离d===≥,当n=-2,m=-1时取等号.∴点(m,n)与原点之间的距离的最小值为,故选A.
    2.(2019·厦门模拟)若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则实数c的值是________.
    解析:依题意知,=≠,解得a=-4,c≠-2,即直线6x+ay+c=0可化为3x-2y+=0,又两平行线之间的距离为,所以=,解得c=2或-6.
    答案:2或-6
    3.已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0,若在坐标平面内存在一点P,使|PA|=|PB|,且点P到直线l的距离为2,则P点坐标为______________________.
    解析:设点P的坐标为(a,b).
    ∵A(4,-3),B(2,-1),
    ∴线段AB的中点M的坐标为(3,-2).
    而AB所在直线的斜率kAB==-1,
    ∴线段AB的垂直平分线方程为y+2=x-3,
    即x-y-5=0.
    ∵点P(a,b)在直线x-y-5=0上,
    ∴a-b-5=0.①
    又点P(a,b)到直线l:4x+3y-2=0的距离为2,
    ∴=2,即4a+3b-2=±10,②
    由①②联立解得或
    ∴所求点P的坐标为(1,-4)或.
    答案:(1,-4)或

    [考法全析]
    考法(一) 点关于点的对称
    [例1] 过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为____________________.
    [解析] 设直线l1与直线l的交点为A(a,8-2a),
    则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把B点坐标代入直线l2的方程得-a-3(2a-6)+10=0,
    解得a=4,即点A(4,0)在直线l上,
    所以由两点式得直线l的方程为x+4y-4=0.
    [答案] x+4y-4=0

    点关于点对称的求解方法
    若点M(x1,y1)和点N(x,y)关于点P(a,b)对称,则由中点坐标公式得进而求解.    
    考法(二) 点关于线的对称
    [例2] (2019·银川月考)点P(2,5)关于x+y+1=0对称的点的坐标为(  )
    A.(6,3) B.(3,-6)
    C.(-6,-3) D.(-6,3)
    [解析] 设点P(2,5)关于x+y+1=0的对称点为Q(a,b),则解得即P(2,5)关于x+y+1=0对称的点的坐标为(-6,-3).故选C.
    [答案] C

    点关于直线对称的解题方法
    若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,则由方程组可得到点P1关于直线l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2).    
    考法(三) 线关于点的对称
    [例3] 已知直线l:2x-3y+1=0,点A(-1,-2),则直线l关于点A对称的直线m的方程为________________.
    [解析] 在直线l上取两点B(1,1),C(10,7),B,C两点关于点A的对称点为B′(-3,-5),C′(-12,-11),所以直线m的方程为=,即2x-3y-9=0.
    [答案] 2x-3y-9=0

    1.线关于点对称的求解方法
    (1)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;
    (2)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.
    2.线关于点对称的实质
    “线关于点的对称”其实质就是“点关于点的对称”,只要在直线上取两个点,求出其对称点的坐标即可,可统称为“中心对称”.    
    [过关训练]
    1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(-4,2),(3,1),则点C的坐标为(  )
    A.(-2,4) B.(-2,-4)
    C.(2,4) D.(2,-4)
    解析:选C 设A(-4,2)关于直线y=2x的对称点为(x,y),则解得∴BC所在直线方程为y-1=(x-3),即3x+y-10=0.联立解得则C(2,4).
    2.已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________.
    解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,
    所以
    解得即M′(1,0).
    又反射光线经过点N(2,6),
    所以所求直线的方程为=,
    即6x-y-6=0.
    答案:6x-y-6=0
    3.设A,B是x轴上的两点,点P的横坐标为3,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是________________.
    解析:由|PA|=|PB|知点P在AB的垂直平分线上.由点P的横坐标为3,且PA的方程为x-y+1=0,得P(3,4).直线PA,PB关于直线x=3对称,直线PA上的点(0,1)关于直线x=3的对称点(6,1)在直线PB上,所以直线PB的方程为=,即x+y-7=0.
    答案:x+y-7=0

    一、题点全面练
    1.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2过定点(  )
    A.(0,4)         B.(0,2)
    C.(-2,4) D.(4,-2)
    解析:选B 由题知直线l1过定点(4,0),则由条件可知,直线l2所过定点关于(2,1)对称的点为(4,0),故可知直线l2所过定点为(0,2),故选B.
    2.若点P在直线3x+y-5=0上,且P到直线x-y-1=0的距离为,则点P的坐标为(  )
    A.(1,2) B.(2,1)
    C.(1,2)或(2,-1) D.(2,1)或(-1,2)
    解析:选C 设P(x,5-3x),则d==,化简得|4x-6|=2,即4x-6=±2,解得x=1或x=2,故P(1,2)或(2,-1).
    3.已知直线l的倾斜角为,直线l1经过点A(3,2)和B(a,-1),且直线l与l1平行,则实数a的值为(  )
    A.0 B.1
    C.6 D.0或6
    解析:选C 由直线l的倾斜角为得l的斜率为-1,
    因为直线l与l1平行,所以l1的斜率为-1.
    又直线l1经过点A(3,2)和B(a,-1),
    所以l1的斜率为,故=-1,解得a=6.
    4.(2018·北京东城区期末)如果平面直角坐标系内的两点A(a-1,a+1),B(a,a)关于直线l对称,那么直线l的方程为(  )
    A.x-y+1=0 B.x+y+1=0
    C.x-y-1=0 D.x+y-1=0
    解析:选A 因为直线AB的斜率为=-1,所以直线l的斜率为1.设直线l的方程为y=x+b,由题意知直线l过点,所以=+b,解得b=1,所以直线l的方程为y=x+1,即x-y+1=0.故选A.
    5.已知点P(-2,0)和直线l:(1+3λ)x+(1+2λ)y-(2+5λ)=0(λ∈R),则点P到直线l的距离d的最大值为(  )
    A.2 B.
    C. D.2
    解析:选B 由(1+3λ)x+(1+2λ)y-(2+5λ)=0,得(x+y-2)+λ(3x+2y-5)=0,此方程是过直线x+y-2=0和3x+2y-5=0交点的直线系方程.解方程组可知两直线的交点为Q(1,1),故直线l恒过定点Q(1,1),如图所示,可知d=|PH|≤|PQ|=,即d的最大值为.
    6.已知直线l1:ax+y-1=0,直线l2:x-y-3=0,若直线l1的倾斜角为,则a=________;若l1⊥l2,则a=________;若l1∥l2,则两平行直线间的距离为________.
    解析:若直线l1的倾斜角为,则-a=k=tan=1,故a=-1;若l1⊥l2,则a×1+1×(-1)=0,故a=1;若l1∥l2,则a=-1,l1:x-y+1=0,两平行直线间的距离d==2.
    答案:-1 1 2
    7.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.
    解析:由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,于是解得
    故m+n=.
    答案:
    8.以点A(4,1),B(1,5),C(-3,2),D(0,-2)为顶点的四边形ABCD的面积为________.
    解析:因为kAB==-,kDC==-.
    kAD==,kBC==.
    则kAB=kDC,kAD=kBC,所以四边形ABCD为平行四边形.
    又kAD·kAB=-1,即AD⊥AB,
    故四边形ABCD为矩形.
    故S四边形ABCD=|AB|·|AD|=×=25.
    答案:25
    9.正方形的中心为点C(-1,0),一条边所在的直线方程是x+3y-5=0,求其他三边所在直线的方程.
    解:点C到直线x+3y-5=0的距离d==.
    设与x+3y-5=0平行的一边所在直线的方程是
    x+3y+m=0(m≠-5),
    则点C到直线x+3y+m=0的距离
    d==,
    解得m=-5(舍去)或m=7,
    所以与x+3y-5=0平行的边所在直线的方程是
    x+3y+7=0.
    设与x+3y-5=0垂直的边所在直线的方程是
    3x-y+n=0,
    则点C到直线3x-y+n=0的距离
    d==,解得n=-3或n=9,
    所以与x+3y-5=0垂直的两边所在直线的方程分别是3x-y-3=0和3x-y+9=0.
    10.已知点P(2,-1).
    (1)求过点P且与原点的距离为2的直线l的方程;
    (2)求过点P且与原点的距离最大的直线l的方程,并求出最大距离;
    (3)是否存在过点P且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.
    解:(1)过点P的直线l与原点的距离为2,而点P的坐标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条件,此时l的斜率不存在,其方程为x=2.
    若斜率存在,设l的方程为y+1=k(x-2),
    即kx-y-2k-1=0.
    由已知得=2,解得k=.
    此时直线l的方程为3x-4y-10=0.
    综上可得直线l的方程为x=2或3x-4y-10=0.
    (2)作图可得过点P与原点O的距离最大的直线是过点P且与PO垂直的直线,如图.
    由l⊥OP,得kl·kOP=-1,
    因为kOP=-,
    所以kl=-=2.
    由直线方程的点斜式得y+1=2(x-2),
    即2x-y-5=0.
    所以直线2x-y-5=0是过点P且与原点O的距离最大的直线,最大距离为=.
    (3)由(2)可知,过点P不存在到原点的距离超过的直线,因此不存在过点P且到原点的距离为6的直线.
    二、专项培优练
    (一)易错专练——不丢怨枉分
    1.(2019·青岛模拟)直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值为(  )
    A.3或-1 B.0或3
    C.0或-1 D.-1或0或3
    解析:选C 两直线无公共点,即两直线平行.当a=0时,这两条直线分别为x+6=0和x=0,无公共点;当a≠0时,由-=-,解得a=3或a=-1.若a=3,这两条直线分别为x+9y+6=0,x+9y+6=0,两直线重合,有无数个公共点,不符合题意,舍去;若a=-1,这两条直线分别为x+y+6=0和3x+3y+2=0,两直线平行,无公共点.综上,a=0或a=-1.
    2.已知A(1,2),B(3,1)两点到直线l的距离分别是,-,则满足条件的直线l共有(  )
    A.1条 B.2条
    C.3条 D.4条
    解析:选C 当A,B两点位于直线l的同一侧时,一定存在这样的直线l,且有两条.又|AB|==,而点A到直线l与点B到直线l的距离之和为+-=,所以当A,B两点位于直线l的两侧时,存在一条满足条件的直线.综上可知满足条件的直线共有3条.故选C.
    3.l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是____________________.
    解析:当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.因为A(1,1),B(0,-1),所以kAB==2,所以当l1,l2间的距离最大时,直线l1的斜率为k=-,此时,直线l1的方程是y-1=-(x-1),即x+2y-3=0.
    答案:x+2y-3=0
    4.若直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为______________________.
    解析:当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0.
    由题意知=,
    即|3k-1|=|-3k-3|,∴k=-.
    ∴直线l的方程为y-2=-(x+1),即x+3y-5=0.
    当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.
    答案:x+3y-5=0或x=-1
    5.在平面直角坐标系中,已知点P(-2,2),直线l:a(x-1)+b(y+2)=0(a,b∈R且不同时为零),若点P到直线l的距离为d,则d的取值范围是________.
    解析:易知直线l经过定点(1,-2),则点P到直线l的最大距离为=5,最小距离为0,所以d的取值范围是[0,5].
    答案:[0,5]
    (二)交汇专练——融会巧迁移
    6.[与导数交汇]若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为(  )
    A.    B.1    C.    D.2
    解析:选C 因为点P是曲线y=x2-ln x上任意一点,所以当点P处的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小.因为直线y=x-2的斜率等于1,曲线y=x2-ln x的导数y′=2x-,令y′=1,可得x=1或x=-(舍去),所以在曲线y=x2-ln x上与直线y=x-2平行的切线经过的切点坐标为(1,1),所以点P到直线y=x-2的最小距离为,故选C.
    7.[与不等式交汇]如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为________.
    解析:以A为坐标原点,平行于l1的直线为x轴,建立如图所示的平面直角坐标系,设B(a,-2),C(b,3).
    ∵AC⊥AB,∴ab-6=0,ab=6,b=.
    Rt△ABC的面积S=·
    =· =
    ≥=6(当且仅当a2=4时取等号).
    答案:6
    8.[与物理知识交汇]如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.
    解析:从特殊位置考虑.如图所示,
    ∵点A(-2,0)关于直线BC:x+y=2的对称点为A1(2,4),∴kA1F=4.又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,∴kFD>kA1F,即kFD∈(4,+∞).
    答案:(4,+∞)

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map