北师大版2020年九年级上册期中考试复习训练(三)
展开
北师大版2020年九年级上册期中考试复习训练(三)满分:100分 时间:90分钟学校:_______班级:______姓名:________得分:_____ 一.选择题(满分30分,每小题3分)1.用配方法解方程x2﹣6x﹣4=0,下列配方正确的是( )A.(x﹣3)2=13 B.(x+3)2=13 C.(x﹣6)2=4 D.(x﹣3)2=52.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( )A.24 B.36 C.40 D.903.如图,D、E分别是△ABC的边AB、AC的中点,若△ADE的面积为1,则四边形DECB的面积为( )A.2 B.3 C.4 D.64.如图,下列选项中不是正六棱柱三视图的是( )A. B. C. D.5.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( )A. B. C. D.6.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )A.方程有两个相等的实数根 B.方程有两个不相等的实数根 C.没有实数根 D.无法确定7.如图所示,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则tan∠BAO的值为( )A. B. C. D.8.如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于( )A. B. C. D.9.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于( )A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm10.如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是( )A. B. C. D.二.填空题(满分15分,每小题3分)11.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y= .12.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为 .13.若x:y:z=2:3:4,则的值为 .14.如图,在平面直角坐标系xOy中,△ABC与△A′B′C′的顶点的横、纵坐标都是整数.若B(5,2),△ABC与△A′B′C′是位似图形,则位似中心的坐标是 .15.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于 ,第n个三角形的面积等于 .三.解答题16.(16分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.(5)(6x﹣1)2=25;17.(6分)小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.18.(8分)对于正实数a、b,定义新运算a*b=﹣a+b.如果16*x2=61,求实数x的值.19.(8分)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.20.(8分)在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).(1)求一次函数和反比例函数的表达式;(2)直接写出关于x的不等式2x+b>的解集;(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BP,当S△ABM=2S△OMP时,求点P的坐标.21.(10分)如图,小明想测量电线杆AB的高度,但在太阳光下,电线杆的影子恰好落在地面和土坡的坡面上,量得坡面上的影长CD=4m,地面上的影长BC=10m,土坡坡面与地面成30°的角,此时测得1m长的木杆的影长为2m,求电线杆的高度.(结果保留根号)22.(9分)“捷马”牌变速自行车的前齿轮的齿数为36,后齿轮有2档,其齿数分别为9、12,如果前轮转3圈,那么后轮分别转了多少圈?23.(10分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.
参考答案一.选择题1.解:方程x2﹣6x﹣4=0变形得:x2﹣6x=4,配方得:x2﹣6x+9=13,即(x﹣3)2=13,故选:A.2.解:设袋中有黑球x个,由题意得:=0.6,解得:x=90,则布袋中黑球的个数可能有90个.故选:D.3.解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=,∵△ADE的面积为1,∴△ABC的面积为4,∴四边形DBCE的面积等于3,故选:B.4.解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.5.解:分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选:C.6.解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.7.解:作AC⊥x轴于C,BD⊥x轴于D,如图,∵顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,∴S△AOC=×|1|=,S△BOD=×|﹣5|=,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD,而∠ACO=∠BDO,∴△AOC∽△OBD,∴=()2==,∴=,在Rt△AOB中,tan∠BAO==,故选:B.8.解:∵点P在函数y=(x>0)的图象上,PA∥x轴,PB∥y轴,∴设P(x,),∴点B的坐标为(x,﹣),A点坐标为(﹣x,),∴△PAB的面积=(x+)(+)=.故选:D.9.解:MP=MN=×4=2﹣2(cm).故线段MP的长度等于(2﹣2)cm.故选:B.10.解:设DF和AE相交于O点,∵四边形ABCD是矩形,∴∠ADC=90°,∵∠EDF=90°,∴∠ADC+∠FDA=∠EDF+∠FDA,即∠FDC=∠ADE,∵AE⊥CF于点H,∴∠F+∠FOH=90°,∵∠E+∠EOD=90°,∠FOH=∠EOD,∴∠F=∠E,∴△ADE∽△CDF,∴AD:CD=DE:DF,∵AD=3,DC=4,DE=,∴DF=.故选:C.二.填空题11.解:设反比例函数解析式为y=(k≠0),∵当x=1时,y=2,∴2=,解得k=4,∴反比例函数解析式为y=,把x=0代入y=得:y=4,故答案为:4.12.解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,故答案是:.13.解:∵x:y:z=2:3:4,∴设x=2a,y=3a,z=4a,则==.故答案为:.14.解:直线AA′与直线BB′的交点坐标为(8,0),所以位似中心的坐标为(8,0).故答案为:(8,0)15.解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三.解答题16.解:(1)∵4x2﹣8x+1=0,∴x2﹣2x=﹣,∴x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.(2)∵7x(5x+2)=6(5x+2),∴7x(5x+2)﹣6(5x+2)=0,∴(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x1=﹣,x2=;(3)∵3x2+5(2x+1)=0,∴3x2+10x+5=0∵a=3,b=10,c=5,∴△=b2﹣4ac=100﹣60=40,∴x==.(4)∵x2﹣2x﹣8=0.∴(x﹣4)(x+2)=0,∴x﹣4=0,x+2=0,∴x1=4,x2=﹣2.(5)∵(6x﹣1)2=25,∴6x﹣1=±5,∴6x﹣1=5或6x﹣1=﹣5,∴x=1或17.解:(1)列表如下:小亮和小明23422+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=; (2)这个游戏规则对双方不公平. 理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.18.解:∵a*b=﹣a+b,且a=16,b=x2,∴﹣16+x2=61,当x>0时,得:4x﹣16+x2=61,即x2+4x﹣77=0,解得:x1=﹣11(舍去),x2=7;当x<0时,得:﹣4x﹣16+x2=61,即x2﹣4x﹣77=0,解得:x3=11(舍去),x4=﹣7,∴x=±7.19.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DFA; (2)∵E是BC的中点,BC=4,∴BE=2,∵AB=6,∴AE=,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴,∴.20.解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0∴b=﹣4,∴一次函数的解析式为y=2x﹣4将C(﹣1,m)代入直线y=2x﹣4中,得2×(﹣1)﹣4=m∴m=﹣6∴C(﹣1,﹣6)将C(﹣1,﹣6)代入y=,得﹣6=,解得k=6∴反比例函数的解析式为y=;(2)解得或,∴直线AB与反比例函数y=的图象交于点C(﹣1,﹣6)和D(3,2).如图,由图象可知:不等式2x+b>的解集是﹣1<x<0或x>3;(3)∵S△ABM=2S△OMP,∴×AM×OB=6,∴×AM×4=6∴AM=3,且点A坐标(2,0)∴点M坐标(﹣1,0)或(5,0)∴点P的坐标为(﹣1,﹣6)或(5,).21.解解:如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,∵CD=4米,CD与地面成30°角,∴DE=CD=×4=2米,根据勾股定理得,CE=米,∵1米杆的影长为2米,∴,∴EF=2DE=2×2=4米,∴BF=BC+CE+EF=10+2+4=(14+2)米,∵,∴AB=(14+2)=(7+)米.答:电线杆的高度为(7+)m.22.解:设后齿轮的齿数为x,前齿轮转了3圈时,后齿轮转了y圈.因为有xy=36×3,所以y=;当x=9时,y==12;当x=12时,y==9.答:如果前轮转3圈,后轮分别转了12圈和9圈.23.解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.