人教版九年级下册29.1 投影优秀第2课时2课时教案设计
展开第2课时 正投影
1.理解正投影的概念;(重点)
2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)
一、情境导入
观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?
二、合作探究
探究点:正投影
【类型一】 确定正投影的形状
如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )
解析:依题意,光线是垂直照下的,故只有D符合.故选D.
方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.
变式训练:见《学练优》本课时练习“课堂达标训练” 第2题
【类型二】 物体与其正投影的关系
木棒长为1.2m,则它的正投影的长一定( )
A.大于1.2m B.小于1.2m
C.等于1.2m D.小于或等于1.2m
解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.
方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型三】 画投影面上的正投影
画出下列立体图形投影线从上方射向下方的正投影.
解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.
解:如图所示:
方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点二:正投影的综合应用
【类型一】 正投影与勾股定理的综合
一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.
(1)求影子A1B1的长度(如图①);
(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).
解析:根据平行投影和正投影的定义解答即可.
解:如图①,A1B1=AB=8cm;
如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE=eq \r(82-42)=4eq \r(3)cm,∴A2B2=4eq \r(3)cm.
方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型二】 正投影与相似三角形的综合
在长、宽都为4m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,eq \r(2)≈1.414)
解析:根据题意画出图形,则AN=0.08m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.
解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4eq \r(2)m.∵BC∥DE,∴△ABC∽△ADE,∴eq \f(BC,DE)=eq \f(AN,AM),即eq \f(BC,4\r(2))=eq \f(0.08,2),∴BC≈0.23(m).
答:灯罩的直径BC约为0.23m.
方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.正投影的概念及性质;
2.正投影的综合应用.
本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.
初中数学人教版九年级下册29.1 投影第2课时教学设计: 这是一份初中数学人教版九年级下册29.1 投影第2课时教学设计,共6页。
初中数学29.1 投影第2课时教案: 这是一份初中数学29.1 投影第2课时教案,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。
初中数学人教版九年级下册29.1 投影教案及反思: 这是一份初中数学人教版九年级下册29.1 投影教案及反思,共2页。教案主要包含了重点难点,新课导入,课堂探究等内容,欢迎下载使用。