终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    人教版2021年七年级数学下册《5.3.2 命题、定理、证明 2》教案设计

    立即下载
    加入资料篮
    人教版2021年七年级数学下册《5.3.2 命题、定理、证明 2》教案设计第1页
    人教版2021年七年级数学下册《5.3.2 命题、定理、证明 2》教案设计第2页
    人教版2021年七年级数学下册《5.3.2 命题、定理、证明 2》教案设计第3页
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版七年级下册5.3.2 命题、定理、证明优质教学设计

    展开

    这是一份人教版七年级下册5.3.2 命题、定理、证明优质教学设计,共7页。教案主要包含了教学目标,学法引导,重点·难点及解决办法,课时安排,教具学具准备,师生互动活动设计,教学步骤,布置作业等内容,欢迎下载使用。
    一、教学目标


    1.了解“证明”的必要性和推理过程中要步步有据.


    2.了解综合法证明的格式和步骤.


    3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.


    4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.


    5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.


    二、学法引导


    1.教师教法:尝试指导,引导发现与讨论相结合.


    2.学生学法:在教师的指导下,积极思维,主动发现.


    三、重点·难点及解决办法


    (-)重点


    证明的步骤和格式是本节重点.


    (二)难点


    理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.


    (三)解决办法


    通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.


    四、课时安排


    l课时


    五、教具学具准备


    投影仪、三角板、自制胶片.


    六、师生互动活动设计


    1.通过引例创设情境,点题,引入新课.


    2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.


    3.通过提问的形式完成小结.


    七、教学步骤


    (-)明确目标


    使学生严密推理过程,掌握推理格式,提高推理能力。


    (二)整体感知


    以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.


    (三)教学过程


    创设情境,引出课题


    师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).


    例1 已知:如图1, , 是截线,求证: .


    证明:∵ (已知),∴ (两直线平行,同位角相等).


    ∵ (对项角相等),∴ (等量代换).


    这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.


    [板书]2.9 定理与证明


    探究新知


    1.命题证明步骤


    学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.


    【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.


    根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):


    第一步,画出命题的图形.


    先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.


    第二步,结合图形写出已知、求证.


    把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.


    第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.


    学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).


    【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.


    反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.


    (2)课本第112页A组第5题.


    【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.


    2.命题的证明


    例2 证明:邻补角的平分线互相垂直.


    【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.


    (1)分析命题的题设与结论,画出命题证明所需要的图形.


    邻补角用图2表示:





    图2


    添画邻补角的平分线,见图3:





    图3


    (2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示: ,角平分线用几何符号语言表示: , ,求证邻补角平分钱互相垂直,用符号语言表示: .


    (3)分析由已知谁出求证途径,写出证明过程.


    有什么结论后可得 ( ),由已知可以推导 吗?学生讨论思考.


    【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.


    已知:如图, , , .


    求证:


    证明:∵ (已知),又∵ , (已知),∴ .


    ∴ (垂直定义).


    证明完成后提醒学生注意以下几点:


    ①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.


    ②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如: 与 互为邻补角,在已知中写为 ,角平分线有几种表示方法,如 是 的平分线, , ,根据此题写成 较好,方便于下面的推理计算.


    ③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.


    反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”


    【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.


    3.判定一个命题是假命题的方法


    师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?


    【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.


    根据学生说明,教师小结:


    判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图, 与 是同位角但不相等就说明“同位角相等是假命题”.


    反馈练习:课本第111页习题2.3A组第4题.


    【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.


    反馈练习


    投影出示以下练习:


    1.指出下列命题的题设和结论


    (1)两条平行线被第三条直线所截,同旁内角互补.


    (2)两个角的和等于直角,这两个角互为余角.


    (3)对项角相等.


    (4)同角或等角的余角相等.


    2.画图,写出已知,求证(不证明)


    (1)同垂直于一条直线的两条直线平行.


    (2)两条平行直线被第三条直线所截,同位角的平分线互相平行.


    3.抄写下题并填空


    已知:如图, .


    求证: .


    证明:∵ ( ),


    ∴ ( ).


    ∴ ( ).


    【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.


    总结、扩展


    以提问的形式归纳出本节课的知识结构:








    八、布置作业


    (-)必做题


    课本第110页习题2.3A组第3(2)、(3)、(4)题.


    (二)思考题


    课本第112页B组第l、2题.


    作业答案


    A组(略)


    B组1.已知两直线平行,同旁内角互补。


    (两直线平行,同旁内角互补) (同角的补角相等).


    2.已知:如图, , 、 分别平分 与 .求证: .











    相关教案

    人教版七年级下册5.3.2 命题、定理、证明教学设计:

    这是一份人教版七年级下册5.3.2 命题、定理、证明教学设计,共4页。教案主要包含了教学目标,教学重点,教学过程,教学反思等内容,欢迎下载使用。

    人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案设计:

    这是一份人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案设计,共8页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    初中数学人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案:

    这是一份初中数学人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案,共7页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map