初中数学北师大版九年级上册第四章 图形的相似6 利用相似三角形测高课后练习题
展开考点一:利用阳光下的影子
【例题】
1、同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
A.1.28m B.1.13mC.0.64mD.0.32m
2、小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为
A.10米 B.12米 C.15米 D.22.5米
【练习】
1、小明的身高是1.6米,他的影长是2米,同一时刻古塔的影长是18米,则古塔的高是________米.
2、如图,小明从路灯下向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是_______米.
3、下图中,是木杆和旗杆竖在操场上,其中木杆在阳光下的影子已画出.
(1)用线段表示这一时刻旗杆在阳光下的影子.
(2)比较旗杆与木杆影子的长短.
(3)图中是否出现了相似三角形?
(4)为了出现这样的相似三角形,木杆不可以放在图中的哪些位置?
考点二:利用标杆
【例题】
1、九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.
2、小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.
9.6米
2米
A
B
C
D
【练习】
1、如图5,初三(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=16m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.
2、如图,甲楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,1米长的标杆的影长是米,此时.
(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?
(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离是多少?
考点三:利用镜子的反射
【例题】
1、为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为 米.
【练习】
1、小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米。当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B。已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角)
考点四:测量知识的综合应用(海岛算经)
【例题】
1、如图,晚间小明站在距离路灯5m(即BD=5m)的地面上,发现他的影子长DF为4m.已知小明的身高为1.6m,如果小明再向远离路灯的方向走4m,则此时小明的影长是多少?
【练习】
1、如图,为测量学校围墙外直立电线杆AB的高度,小亮在操场上点C处直立高3m的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端D与电线杆顶端B重合;小亮又在点C1处直立高3m的竹竿C1D1,然后退到点E1处,此时恰好看到竹竿顶端D1与电线杆顶端B重合。小亮的眼睛离地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m。
(1)△FDM∽△ ▲ ,△F1D1N∽△ ▲ ;
(2)求电线杆AB的高度。
初中6 利用相似三角形测高达标测试: 这是一份初中6 利用相似三角形测高达标测试,共5页。试卷主要包含了5 mB等内容,欢迎下载使用。
北师大版九年级上册第四章 图形的相似6 利用相似三角形测高随堂练习题: 这是一份北师大版九年级上册第四章 图形的相似6 利用相似三角形测高随堂练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
【课时训练】北师大版数学九年级上册--4.6 利用相似三角形测高(pdf版,含答案): 这是一份【课时训练】北师大版数学九年级上册--4.6 利用相似三角形测高(pdf版,含答案),文件包含课时训练参考答案全册pdf、46利用相似三角形测高pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。