数学七年级下册9.2 一元一次不等式教案设计
展开知识点:解一元一次不等式的方法和步骤
1.利用不等式的性质,我们可以把一个较复杂的一元一次不等式逐步转化为x>a(x≥a)或x
步骤为:(1)去分母(根据不等式的性质2或性质3);(2)去括号(根据整式的运算法则);(3)移项(根据不等式的性质1);(4)合并同类项(根据合并同类项的法则);(5)系数化为1(根据不等式的性质2或性质3).
2.解一元一次不等式与解一元一次方程的区别与联系:
联系:两者都通过去分母、去括号、移项、合并同类项、系数化为1等过程求出答案.区别:(1)解一元一次不等式的依据是不等式的基本性质,解一元一次方程的依据是等式的基本性质.移项时不改变不等号的方向,但在去分母及未知数系数化为1这两步,当不等式两边都乘(或除以)同一个负数时,不等号的方向必须改变,而方程在去分母和未知数系数化为1时,等号不变.
(2)一元一次不等式的解集一般包含无限多个数,而一元一次方程的解一般只包含一个数.
(3)一元一次不等式的解集,在数轴上一般用无限多个点的集合表示,一元一次方程的解在数轴上一般用一个点表示.
考点1:不等式的特殊解
【例1】 求不等式 ->+的正整数解.
解:去分母,得3(2-3x)-3(x-5)>2(-4x+1)+8,
去括号,得6-9x-3x+15>-8x+2+8,
移项,合并同类项,得-4x>-11,系数化为1,得x<.
因为小于的正整数有1,2两个,所以这个不等式的正整数解是1,2.
点拨:求不等式的特殊解时,应先求出不等式的解集,然后在解集中确定符合要求的特殊解.
考点2:方程(组)解的讨论
【例2】 若关于x的方程x-=的解是非负数,求m的取值范围.
解:解关于x的方程x-=,去分母,得2x-=2-x,去括号,得2x-x+m=2-x,移项、合并同类项,得2x=2-m,系数化为1,得x=.因为x≥0,所以≥0,即2-m≥0,所以m≤2.
点拨:首先解方程,用含m的代数式表示出x,再根据解是非负数得x≥0,从而列出关于m的不等式,求出其取值范围.
初中数学人教版七年级下册9.2 一元一次不等式教学设计: 这是一份初中数学人教版七年级下册9.2 一元一次不等式教学设计,共4页。教案主要包含了教学目标,教学重点,教学过程,教学反思等内容,欢迎下载使用。
数学七年级下册9.2 一元一次不等式教学设计: 这是一份数学七年级下册9.2 一元一次不等式教学设计,共5页。教案主要包含了课标要求,教学重难点,教学过程,情景导入,初步认识,思考探究,获取新知,运用新知,深化理解,师生互动,课堂小结,课后作业等内容,欢迎下载使用。
2020-2021学年第九章 不等式与不等式组9.2 一元一次不等式教学设计及反思: 这是一份2020-2021学年第九章 不等式与不等式组9.2 一元一次不等式教学设计及反思,共2页。