数学九年级上册24.2.2 直线和圆的位置关系巩固练习
展开、选择题
LISTNUM OutlineDefault \l 3 如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )
A.40° B.50° C.60° D.70°
LISTNUM OutlineDefault \l 3 如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.
且∠BDA=3∠DBA,则∠DBA的度数为( )
A.15° B.20° C.18° D.22°
LISTNUM OutlineDefault \l 3 如图,AB是⊙O的直径,点C在⊙O上,且不与A、B两点重合,过点C的切线交AB的延长线于点D,连接AC,BC,若∠ABC=53°,则∠D的度数是( )
A.16° B.18° C.26.5° D.37.5°
LISTNUM OutlineDefault \l 3 如图,AB是⊙O的直径.点P、Q在⊙O上,过点P的切线与AB的延长线交于点C,连接AQ、PQ,若∠C=36°,则∠Q的度数为( )
A.66° B.65° C.64° D.63°
LISTNUM OutlineDefault \l 3 如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是( )
A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A
LISTNUM OutlineDefault \l 3 如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为( )
A.3 B.4 C.6 D.9
LISTNUM OutlineDefault \l 3 如图,等边△ABC的边长为2,⊙A的半径为1,D是BC上的动点,DE与⊙A相切于点E,DE的最小值是( )
A.1 B. C. D.2
LISTNUM OutlineDefault \l 3 如图,矩形ABCD中,AB=6,BC=8,P是边CD上一点,Q是以AD为直径的半圆上一点,则BP+PQ的最小值为( )
A.10 B.2 +4 C.+1 D.6 -4
、填空题
LISTNUM OutlineDefault \l 3 如图所示,PM切⊙O于点A,PO交⊙O于点B,点E为圆上一点,若BE∥AO,∠EAO=30°,若⊙O的半径为1,则AP的长为 .
LISTNUM OutlineDefault \l 3 如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为 ______ .
LISTNUM OutlineDefault \l 3 如图,AB 是⊙O 的直径,AD 是⊙O 的弦,过点 D 作⊙O 的切线交 AB 延长线于点 C.若∠C=40°,则 ∠A 的度数为 °.
LISTNUM OutlineDefault \l 3 如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为 .
LISTNUM OutlineDefault \l 3 如图,△ABC的周长为8,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为 .
LISTNUM OutlineDefault \l 3 如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值为 .
、解答题
LISTNUM OutlineDefault \l 3 如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.
(1)若∠ADE=25°,求∠C的度数;
(2)若AC=4,CE=2,求⊙O半径的长.
LISTNUM OutlineDefault \l 3 在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F
(1)求证:AC是⊙O的切线;
(2)若CF=2,CE=4,求⊙O的半径.
LISTNUM OutlineDefault \l 3 如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.
(1)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;
(2)如图2,当点F是CD的中点时,求△CDE的面积.
LISTNUM OutlineDefault \l 3 如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是 弧DE的中点.
(1)求证:直线l是⊙O的切线;
(2)若PA=6,求PB的长
LISTNUM OutlineDefault \l 3 如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.
(1)求证:DE是⊙O的切线;
(2)若AB=10,求线段OG的长.
LISTNUM OutlineDefault \l 3 如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
参考答案
LISTNUM OutlineDefault \l 3 \s 1 答案为:A
LISTNUM OutlineDefault \l 3 答案为:C
LISTNUM OutlineDefault \l 3 答案为:A
LISTNUM OutlineDefault \l 3 答案为:D
LISTNUM OutlineDefault \l 3 答案为:C
LISTNUM OutlineDefault \l 3 答案为:C
LISTNUM OutlineDefault \l 3 答案为:B
LISTNUM OutlineDefault \l 3 答案为:D
解析:设半圆的圆心为O,作O关于CD的对称点O′,连接BO′交CD于点P,连接PO交半圆O于点Q,此时BP+PQ取最小值,如图所示.
∵AB=CD=6,BC=AD=8, ∴DO′= 0.5AD=4,
过O′作O′E⊥BC交BC的延长线于E,
则四边形CDO′E是矩形, ∴CE=DO′=4,EO′=CD=6,
当BP+PQ取最小值时,BP+PQ=BO′- 0.5OD= 6-4.故选:D.
LISTNUM OutlineDefault \l 3 答案为:.
LISTNUM OutlineDefault \l 3 答案为:48°.
LISTNUM OutlineDefault \l 3 答案为:25
LISTNUM OutlineDefault \l 3 答案为:
LISTNUM OutlineDefault \l 3 答案为:4
LISTNUM OutlineDefault \l 3 答案为:.
解:连接OP、OQ,如图所示,
∵PQ是⊙O的切线,∴OQ⊥PQ,
根据勾股定理知:PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,
∴S△AOB=OA•OB=AB•OP,即OP==4,∴PQ==.
LISTNUM OutlineDefault \l 3 解:(1)连接OA,
∵∠ADE=25°,
∴由圆周角定理得:∠AOC=2∠ADE=50°,
∵AC切⊙O于A,
∴∠OAC=90°,
∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;
(2)设OA=OE=r,
在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,
即r2+42=(r+2)2,解得:r=3,
答:⊙O半径的长是3.
LISTNUM OutlineDefault \l 3 (1)证明:连接OE.
∵OE=OB,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBC,
∴∠EBC=∠OEB,
∴OE∥BC,
∴∠OEA=∠C,
∵∠ACB=90°,
∴∠OEA=90°,
∴AC是⊙O的切线;
(2)解:设⊙O的半径为r.
过点O作OH⊥BF交BF于H,
由题意可知四边形OECH为矩形,
∴OH=CE=4,CH=OE=r,
∴BH=FH=CH-CF=r-2,
在Rt△BHO中,∵OH2+BH2=OB2,
∴42+(r-2)2=r2, 解得r=5.
∴⊙O的半径为5.
LISTNUM OutlineDefault \l 3 解:(1)如图1中,连接OD.
∵∠C=45°,
∴∠AOD=2∠C=90°,
∵ED∥AB,
∴∠AOD+∠EDO=180°,
∴∠EDO=90°,
∴ED⊥OD,
∴ED是⊙O切线.
(2)如图2中,连接BC,
∵CF=DF,
∴AF⊥CD,
∴AC=AD,
∴∠ACD=∠ADC,
∵AB∥ED,
∴ED⊥DC,
∴∠EDC=90°,
在RT△ACB中,∵∠ACB=90°,∠CAB=30°,AB=2,
∴BC=1,AC=,
∴CF=AC=,CD=2CF=,
在RT△ECD中,
∵∠EDC=90°,CD=,∠E=∠CAB=30°,
∴EC=2CD=2,ED=3,
∴S△ECD=•ED•CD=.
LISTNUM OutlineDefault \l 3 (1)证明: 连接DE,OA.
∵PD是直径, ∴∠DEP=90°,
∵PB⊥FB, ∴∠DEP=∠FBP, ∴DE∥BF,
∵ , ∴OA⊥DE, ∴OA⊥BF,
∴直线l是⊙O的切线.
(2)作OH⊥PA于H.
∵OA=OP,OH⊥PA, ∴AH=PH=3,
∵OA∥PB, ∴∠OAH=∠APB,
∵∠AHO=∠ABP=90°, ∴△AOH∽△PAB,
LISTNUM OutlineDefault \l 3 解:(1)连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°,
∴∠ODA=∠EAD,
∴OD∥AE,
∴∠E+∠ODE=180°,
∴∠ODE=90°,
∴DE与⊙O相切;
(2)∵将△AHD沿AD翻折得到△AED,
∴∠OAD=∠EAD=30°,
∴∠OAC=60°,
∵OA=OD,
∴△OAC是等边三角形,
∴∠AOG=60°,
∵∠OAD=30°,
∴∠AGO=90°,
∴OG=0.5AO=2.5.
LISTNUM OutlineDefault \l 3 (1)证明:连接OB,如图所示:
∵E是弦BD的中点,
∴BE=DE,OE⊥BD,=,
∴∠BOE=∠A,∠OBE+∠BOE=90°,
∵∠DBC=∠A,
∴∠BOE=∠DBC,
∴∠OBE+∠DBC=90°,
∴∠OBC=90°,
即BC⊥OB,
∴BC是⊙O的切线;
(2)解:∵OB=6,BC=8,BC⊥OB,
∴OC==10,
∵△OBC的面积=OC•BE=OB•BC,
∴BE===4.8,∴BD=2BE=9.6,
即弦BD的长为9.6.
初中人教版24.2.2 直线和圆的位置关系课时作业: 这是一份初中人教版24.2.2 直线和圆的位置关系课时作业,共9页。试卷主要包含了6 B等内容,欢迎下载使用。
初中数学人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程巩固练习: 这是一份初中数学人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程巩固练习,共6页。
人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案): 这是一份人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。