- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第03章 第1讲 函数及其表示 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第03章 第5讲 指数与指数函数 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第03章 第7讲 函数的图象 课件 13 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第03章 第3讲 函数的奇偶性及周期性 课件 13 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第03章 第6讲 对数与对数函数 课件 13 次下载
2021版新高考地区高考数学(人教版)大一轮复习(课件+学案)第03章 阅读与欣赏(二) 数学抽象——活用函数性质中“三个二级”结论
展开数学抽象——活用函数性质中“三个二级”结论
函数的奇偶性、周期性、对称性及单调性,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
一、奇函数的最值性质
已知函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x) 在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.
设函数f(x)=的最大值为M,最小值为m,则M+m=________.
【解析】 函数f(x)的定义域为R,
f(x)==1+,
设g(x)=,则g(-x)=-g(x),
所以g(x)为奇函数,
由奇函数图象的对称性知g(x)max+g(x)min=0,
所以M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.
【答案】 2
二、抽象函数的周期性
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(2)如果f(x+a)=(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
已知定义在R上的函数f(x),对任意实数x有f(x+4)=-f(x)+2,若函数f(x-1)的图象关于直线x=1对称,f(1)=2,则f(17)=________.
【解析】 由函数y=f(x-1)的图象关于直线x=1对称可知,函数f(x)的图象关于y轴对称,故f(x)为偶函数.
由f(x+4)=-f(x)+2,得f(x+4+4)=-f(x+4)+2=f(x),所以f(x)是最小正周期为8的偶函数,所以f(17)=f(1+2×8)=f(1)=2.
【答案】 2
三、抽象函数的对称性
已知函数f(x)是定义在R上的函数.
(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x=对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称.
(2)若函数y=f(x)满足f(a+x)+f(a-x)=0,即f(x)=-f(2a-x),则f(x)的图象关于点(a,0)对称.
(2020·黑龙江牡丹江一中期末)设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),下面关于f(x)的判定,其中正确命题的个数为( )
①f(4)=0;
②f(x)是以4为周期的函数;
③f(x)的图象关于x=1对称;
④f(x)的图象关于x=2对称.
A.1 B.2
C.3 D.4
【解析】 因为f(x)是(-∞,+∞)上的奇函数,所以f(-x)=-f(x),f(0)=0,
因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),
即f(x)是以4为周期的周期函数,f(4)=f(0)=0,
因为f(x+2)=-f(x),所以f[(x+1)+1]=f(-x),
令t=x+1,则f(t+1)=f(1-t),所以f(x+1)=f(1-x),
所以f(x)的图象关于x=1对称,而f(2+x)=f(2-x)显然不成立.
故正确的命题是①②③,故选C.
【答案】 C