所属成套资源:2021中考数学一轮复习——人教版九年级数学
人教版 九年级数学 25.2 用列举法求概率 培优训练(含答案)
展开人教版 九年级数学 25.2 用列举法求概率 培优训练一、选择题(本大题共8道小题)1. 2019·大连 不透明袋子中装有红、绿小球各一个,这些小球除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. B. C. D. 2. 小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么小李获胜的概率为( )A. B. C. D. 3. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”,如“947”就是一个“V数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V数”的概率是( )A. B. C. D. 4. 如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A. B. C. D. 5. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( )A. B. C. D. 6. 从长度分别为2,3,4,5的4条线段中任取三条,能构成直角三角形的概率为( )A. B. C. D. 7. 从如图所示图形中任取一个,是中心对称图形的概率是( )A. B. C. D.1 8. 从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为( )A. B. C. D. 二、填空题(本大题共8道小题)9. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________. 10. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是________. 11. 三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________. 12. (2019·浙江台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________. 13. 一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子一次,向上一面的点数是4的概率是________. 14. 如图,在3×3的方格中,点A,B,C,D,E,F均位于格点上,从C,D,E,F四点中任取一点,与点A,B一起作为顶点构造三角形,则所构造的三角形为等腰三角形的概率是________. 15. 如图所示,一只蚂蚁从点A出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么蚂蚁从点A出发到达E处的概率是________. 16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________. 三、解答题(本大题共4道小题)17. 在甲、乙两个不透明的口袋中装有大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,2,3,4,乙袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中任意摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)的可能的结果;(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,他们两人谁获胜的概率大? 18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴. 19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率. 20. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况;(2)小美玩一次游戏,得到小兔玩具的机会有多大?(3)假设有125人玩此游戏,估计游戏设计者可赚多少元. 人教版 九年级数学 25.2 用列举法求概率 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】D 2. 【答案】A [解析] 画树状图如下:共有25种等可能的结果,两人出拳的手指数之和为偶数的结果有13种,所以小李获胜的概率为.故选A. 3. 【答案】C [解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V数”的概率为=. 4. 【答案】C [解析] 设正方形ABCD的边长为2a,针尖落在阴影区域内的概率==.故选C. 5. 【答案】A 6. 【答案】D [解析] 一共有四种可能,分别是2,3,4;2,3,5;2,4,5;3,4,5.其中只有长度分别是3,4,5的三条线段能构成直角三角形,所以能构成直角三角形的概率为. 7. 【答案】C [解析] 因为共有4种等可能的结果,任取一个,是中心对称图形的有3种结果,所以任取一个,是中心对称图形的概率是.故选C. 8. 【答案】C [解析] 列表如下:共有12种等可能的结果,其中关于x的一元二次方程ax2+4x+c=0有实数解的结果有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P==.故选C. 二、填空题(本大题共8道小题)9. 【答案】 10. 【答案】 [解析] 若从-1,1,2这三个数中任取两个分别作为点M的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M在第二象限的概率是. 11. 【答案】 【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有下列两种情况:乙、丙、甲;丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率==. 12. 【答案】【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为;故答案为:. 13. 【答案】 [解析] 抛掷骰子一次,向上一面的点数可能是1,2,3,4,5,6,一共有6种等可能的结果,其中向上一面的点数是4的结果有1种,所以P(向上一面的点数是4)=. 14. 【答案】 [解析] 从C,D,E,F四个点中任意取一点,一共有4种可能,当选取点D,C,F时,所构造的三角形是等腰三角形,故P(所构造的三角形是等腰三角形)=. 15. 【答案】 [解析] 画树状图如图所示:由树状图知,共有4种等可能的结果,蚂蚁从点A出发到达E处的结果有2种,所以蚂蚁从点A出发到达E处的概率是=. 16. 【答案】 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为. 三、解答题(本大题共4道小题)17. 【答案】解:(1)画树状图如图所示:(2)因为解方程x2-5x+6=0,得x=2或x=3.由树状图得共有12种等可能的结果,其中m,n都是方程x2-5x+6=0的解的结果有4种,m,n都不是方程x2-5x+6=0的解的结果有2种,所以小明获胜的概率为=,小利获胜的概率为=,所以小明获胜的概率大. 18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为=. 19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B手中的结果只有1种,∴两次传球后,球恰好在B手中的概率为.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A手中的结果有2种,∴三次传球后,球恰好在A手中的概率为=. 20. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为=.(3)125×(3×-4×)=200(元).答:估计游戏设计者可赚200元.