初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系精品巩固练习
展开
这是一份初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系精品巩固练习,共19页。试卷主要包含了下列四个选项中的表述,正确的是,如图,抛物线y=等内容,欢迎下载使用。
一.选择题
1.下列四个选项中的表述,正确的是( )
A.经过半径上一点且垂直于这条半径的直线是圆的切线
B.经过半径的端点且垂直于这条半径的直线是圆的切线
C.经过半径的外端且垂直于这条半径的直线是圆的切线
D.经过一条弦的外端且垂直于这条弦的直线是圆的切线
2.如图,PA是⊙O的切线,点A为切点,PO交⊙O于点B,∠P=30°,点C在⊙O上,连接AC,BC,则∠ACB的度数为( )
A.25°B.28°C.30°D.35°
3.如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC是⊙A切线的是( )
A.∠A=50°,∠C=40°B.∠B﹣∠C=∠A
C.AB2+BC2=AC2D.⊙A与AC的交点是AC中点
4.如图PA、PB是⊙O的切线,切点分别为A、B,点C在上,过C作⊙O的切线分别交PA、PB于点D、E,连接OD、OE,若∠P=50°,则∠DOE的度数为( )
A.130°B.50°C.60°D.65°
5.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则AE的长为( )
A.1B.2﹣C.D.
6.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,以O为圆心,1cm为半径作圆,当O从点P出发以2cm/s速度向右作匀速运动,经过ts与直线a相切,则t为( )
A.2sB.s或2sC.2s或sD.s或s
7.如图,点D是△ABC中BC边的中点,DE⊥AC于E,以AB为直径的⊙O经过D,连接AD,有下列结论:①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.其中正确的结论是( )
A.①②B.①②③C.②③D.①②③④
8.如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的最小值是﹣8;②抛物线的对称轴是直线x=3;③⊙D的半径为4;④抛物线上存在点E,使四边形ACED为平行四边形;⑤直线CM与⊙D相切.其中正确结论的个数是( )
A.5B.4C.3D.2
二.填空题(共6小题)
9.如图,已知∠AOB=30°,M为OB边上任意一点,以M为圆心、3cm为半径作⊙M.当OM= cm时,⊙M与OA相切.
10.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为 时,BP与⊙O相切.
11.如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,需添加的条件是 .(不添加其他字母和线条)
12.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线,与OA的延长线交于点D.若⊙O的半径为2,则BD的长为 .
13.如图,在Rt△ABC中,∠ACB=90°,过点C作△ABC外接圆⊙O的切线交AB的垂直平分线于点D,AB的垂直平分线交AC于点E.若OE=2,AB=8,则CD= .
14.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是 .
三.解答题(共6小题)
15.如图,⊙O是△ABC的外接圆,点D在弦AC的延长线上,连接BD,恰有∠DBC=∠DAB.
(1)求证:BD是⊙O的切线;
(2)若点E是弧AC的中点,且∠EAB=75°,求∠D的度数.
16.如图,已知AB是⊙O的直径,点C在⊙O上,AD⊥DC于点D,AC平分∠DAB.
(1)求证:直线CD是⊙O的切线;
(2)若AB=4,∠DAB=60°,求AD的长.
17.如图,AB为⊙O的直径,点D在⊙O外,∠BAD的平分线与⊙O交于点C,连接BC、CD,且∠D=90°.
(1)求证:CD是⊙O的切线;
(2)若∠DCA=60°,BC=3,求的长.
18.如图,AB是⊙O的直径,直线CD与AB的延长线交于点E,AD⊥CD,点C是的中点.
(1)求证:直线CD与⊙O相切于点C;
(2)若∠CAD=30°,⊙O的半径为3,一只蚂蚁从B点出发,沿着BE﹣EC﹣爬回至点B,求蚂蚁爬过的路程(π≈3.14,,结果保留一位小数).
19.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,交AC于点E,AC的反向延长线交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若DE+EA=8,AF=16,求⊙O的半径.
20.如图,已知AB是⊙O的直径,BC是⊙O的切线,连接AC与⊙O交于点 D.取BC的中点E,连接DE,并连接OE交⊙O于点F.连接AF交BC于点G,连接BD交AG于点H.
(1)若EF=1,BE=,求∠EOB的度数;
(2)求证:DE为⊙O的切线;
(3)求证:点F为线段HG的中点.
参考答案
一.选择题
1.解:由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,
故A,B,D选项不正确,C选项正确,
故选:C.
2.
解:连接OA,
∵PA为⊙O的切线,
∴∠OAP=90°,
∵∠P=30°,
∴∠AOP=90°﹣∠P=90°﹣30°=60°,
∴∠ACB=∠AOP=30°,
故选:C.
3.解:A、∵∠A=50°,∠C=40°,
∴∠B=180°﹣∠A﹣∠C=90°,
∴BC⊥AB,
∵点B在⊙A上,
∴AB是⊙A的半径,
∴BC是⊙A切线;
B、∵∠B﹣∠C=∠A,
∴∠B=∠A+∠C,
∵∠A+∠B+∠C=180°,
∴∠B=90°,
∴BC⊥AB,
∵点B在⊙A上,
∴AB是⊙A的半径,
∴BC是⊙A切线;
C、∵AB2+BC2=AC2,
∴△ABC是直角三角形,∠B=90°,
∴BC⊥AB,
∵点B在⊙A上,
∴AB是⊙A的半径,
∴BC是⊙A切线;
D、∵⊙A与AC的交点是AC中点,
∴AB=AC,但不能证出∠B=90°,
∴不能判定BC是⊙A切线;
故选:D.
4.解:如图,连接OA、OB、OC,
∵PA、PB是⊙O的切线,A、B为切点,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∵∠P=50°,
∴∠AOB=360°﹣90°﹣90°﹣50°=130°,
∵DE切⊙O于C,
∴OC⊥DE,
∴∠DCO=∠ECO=90°,
∵PA、PB、DE是⊙O的切线,切点是A、B、C,
∴∠AEO=∠CEO,∠CDO=∠BDO,
∵∠AOE=180°﹣∠OAE﹣∠AEO,∠COE=180°﹣∠OCE﹣∠CEO,
∴∠AOE=∠COE,
同理可证:∠COD=∠BOD,
∴∠DOE=∠DOC+∠EOC=∠AOB=×130°=65°.
故选:D.
5.解:连接OC,并过点O作OF⊥CE于F,
∵△ABC为等边三角形,边长为4,
∴∠ACB=60°,高为2,
∵等边三角形ABC与⊙O等高,
∴OC=,
∵⊙O与BC相切于点C,
∴∠OCB=90°,
∴∠OCF=30°,
在Rt△OFC中,可得FC=,
∵OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3,
∴AE=AC﹣CE=4﹣3=1,
故选:A.
6.解:∵直线a⊥b,
∴⊙O与直线a相切时,切点为H,
∴OH=1cm,
当点O在点H的左侧,⊙O与直线a相切时,如图1所示:
OP=PH﹣OH=4﹣1=3(cm);
∴t=s;
当点O在点H的右侧,⊙O与直线a相切时,如图2所示:
OP=PH+OH=4+1=5(cm);
∴t=s
∴⊙O与直线a相切,t为s或s,
故选:D.
7.解:∵AB是⊙O直径,
∴∠ADB=90°,
∴AD⊥BC,选项①正确;
连接OD,如图,
∵D为BC中点,O为AB中点,
∴DO为△ABC的中位线,
∴OD∥AC,
又DE⊥AC,
∴∠DEA=90°,
∴∠ODE=90°,
∴DE为圆O的切线,选项④正确;
又OB=OD,
∴∠ODB=∠B,
∵AB为圆O的直径,
∴∠ADB=90°,
∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,
∴∠EDA=∠BDO,
∴∠EDA=∠B,选项②正确;
由D为BC中点,且AD⊥BC,
∴AD垂直平分BC,
∴AC=AB,又OA=AB,
∴OA=AC,选项③正确;
则正确的结论为①②③④.
故选:D.
8.解:∵在y=(x+2)(x﹣8),当y=0时,x=﹣2或x=8,
∴点A(﹣2,0)、B(8,0),
∴抛物线的对称轴为x==3,
故②正确;
当x=3时,y最小=(3+2)(3﹣8)=﹣,
故①错误;
∵⊙D的直径为8﹣(﹣2)=10,即半径为5,故③错误;
在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时,y=﹣4,
∴点C(0,﹣4),
当y=﹣4时,x2﹣x﹣4=﹣4,
解得:x1=0、x2=6,
所以点E(6,﹣4),
则CE=6,
∵AD=3﹣(﹣2)=5,
∴AD≠CE,
∴四边形ACED不是平行四边形,故④错误;
∵y=x2﹣x﹣4=(x﹣3)2﹣,
∴点M(3,﹣),
设直线CM解析式为y=kx+b,
将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,
所以直线CM解析式为y=﹣x﹣4;
设直线CD解析式为y=mx+n,
将点C(0,﹣4)、D(3,0)代入,得:,解得:,
所以直线CD解析式为y=x﹣4,
由﹣×=﹣1知CM⊥CD于点C,
∴直线CM与⊙D相切,故⑤正确;
故选:D.
二.填空题(共6小题)
9.解:设⊙M与OA相切于N,
连接MN,
∵MN⊥AO,∠AOB=30°,3cm为半径,
∴OM=2MN=2×3=6cm.
故当OM=6cm时,⊙M与OA相切,
故答案为:6.
10.解:连接OP
∵当OP⊥PB时,BP与⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=6cm,
弧AP==2π,
∵圆的周长为:12π,
∴点P运动的距离为2π或12π﹣2π=10π;
∴当t=2秒或10秒时,有BP与⊙O相切.
故答案为:2秒或10秒.
11.解:连接OD,
当DE与圆相切时,ED⊥OD,
∵DE⊥AC,
∴OD∥AC,
∵AO=BO,
∴D是BC的中点.
故答案为:D是BC的中点.
12.解:连接OB,
∵四边形OABC是菱形,
∴OA=AB,
∵OA=OB,
∴OA=AB=OB,
∴∠AOB=60°,
∵BD是⊙O的切线,
∴∠DBO=90°,
∵OB=2,
∴BD=OB=2.
故答案为:2.
13.解:连接OC,
∵CD是⊙O的切线,
∴∠OCD=90°,
∵∠ACB=90°,
∴∠DCE=∠COB,
∵OD⊥AB,
∴∠AOE=90°,
∴∠A+∠B=∠A+∠AEO=90°,
∴∠AEO=∠B,
∵OC=OB,
∴∠OCB=∠B,
∵∠DEC=∠AEO,
∴∠DEC=∠DCE,
∴DE=DC,
设DE=DC=x,
∴OD=2+x,
∵OD2=OC2+CD2,
∴(2+x)2=42+x2,
解得:x=3,
∴CD=3,
故答案为:3.
14.解:连接AD,
∵D为BC中点,点O为AB的中点,
∴OD为△ABC的中位线,
∴OD∥AC,①正确;
∵AB是⊙O的直径,
∴∠ADB=90°=∠ADC,
即AD⊥BC,又BD=CD,
∴△ABC为等腰三角形,
∴∠B=∠C,②正确;
∵DE⊥AC,且DO∥AC,
∴OD⊥DE,
∵OD是半径,
∴DE是⊙O的切线,∴④正确;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴⑤正确;
∵D为BC中点,AD⊥BC,
∴AC=AB,
∵OA=OB=AB,
∴OA=AC,
∴③正确,
故答案为:①②③④⑤.
三.解答题(共6小题)
15. (1)证明:连接BO,
∵BM是⊙O的直径,
∴∠BCM=90°,
∴∠CBM+∠M=90°,
∵∠DAB=∠M,∠DBC=∠DAB,
∴∠DBC=∠M,
∴∠CBM+∠DBC=90°,
∴∠OBD=90°,
∴BD是⊙O的切线;
(2)解:连接OE交AC于F,
∵点E是弧AC的中点,
∴OE⊥AC,
∴∠EFD=90°,
∵BD是⊙O的切线,
∴∠OBD=90°,
∵∠BOE=2∠BAE=150°,
∴∠ADB=360°﹣∠OBD﹣∠BOE﹣∠EFD=30°.
16.(1)证明:连接OC,如图1所示:
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠DAC=∠OAC,
∴∠OCA=∠DAC,
∴OC∥AD,
∵AD⊥DC,
∴CD⊥OC,
又∵OC是⊙O的半径,
∴直线CD是⊙O的切线;
(2)解:连接BC,如图2所示:
∵AB是⊙O的直径,
∴∠ACB=90°,
∵AC平分∠DAB,∠DAB=60°,
∴∠DAC=∠BAC=30°,
∴BC=AB=2,AC=BC=2,
∵AD⊥DC,
∴∠ADC=90°,
∴CD=AC=,AD=CD=3.
17.解:(1)证明:连接OC,
∵AC是∠BAD的平分线,
∴∠CAD=∠BAC,
又∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCA=∠CAD,
∴OC∥AD,
∴∠OCD=∠D=90°,
∴CD是⊙O的切线;
(2)解:∵∠ACD=60°,
∴∠OCA=30°,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠OCB=60°,
∵OC=OB,
∴△OCB是等边三角形,
∴OB=OC=BC=3,∠COB=60°,
∴的长:=π.
18.(1)证明:连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠OAC=∠DAC,
∴∠OCA=∠DAC,
∴OC∥AD,
∵AD⊥CD,
∴CD⊥OC,
∴CD为⊙O的切线,
∴直线CD与⊙O相切于点C;
(2)解:∵∠CAD=30°,
∴∠CAE=∠CAD=30°,
由圆周角定理得,∠COE=60°,
∴OE=2OC=6,EC=OC=3,
的长为:=π,
∴蚂蚁爬过的路程=3+3+π≈11.3.
19.(1)证明:∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC.
∵DE⊥AC,OD是半径,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)解:如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,
∴四边形ODEH是矩形,
∴OD=EH,OH=DE.
∴AH=AF=8,
设AE=x.
∵DE+AE=8,
∴OH=DE=8﹣x,OA=OD=HE=AH+AE=8+x,
在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即82+(8﹣x)2=(8+x)2,
解得:x=2,
∴OA=8+2=10.
∴⊙O的半径为10.
20.解:(1)∵AB是⊙O的直径,BC是⊙O的切线,
∴∠ABC=90°,
在直角三角形OBE中,设圆O半径为r,
∵EF=1,BE=,则,r2+()2=(r+1)2,
解得r=1,
∴OB=1,OE=2,
∴∠EOB=60°;
(2)连结OD,
∵AB是⊙O的直径,
∴∠ADB=∠BDC=90°,
∵E为直角三角形BCD斜边的中点,
∴DE=EC,
∴∠CDE=∠C,
∵OD=OA,
∴∠OAD=∠ODA,
∴∠ODA+∠CDE=∠OAD+∠C=90°,
∴∠ODE=180°﹣90°=90°,
∴DE是⊙O的切线;
(3)∵O、E分别为AB、BC的中点,
∴OE∥AC,
∵BD⊥AC,
∴OE⊥BD,
∴=,
∴∠FBD=∠FAB,
∵∠GBF=∠FAB,
∴∠FBD=∠GBF,
∴BF⊥HG,
∴BF平分HG,
即:点F为线段HG的中点.
相关试卷
这是一份初中数学人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程巩固练习,共6页。
这是一份人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质优秀综合训练题,文件包含第24章重点突破训练切线性质判定的应用-2022-2023九年级上册同步讲练解析版人教版docx、第24章重点突破训练切线性质判定的应用-2022-2023九年级上册同步讲练原卷版人教版docx等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。