北师大版九年级上册第一章 特殊平行四边形3 正方形的性质与判定精品复习练习题
展开一.选择题
1.下列说法错误的是( )
A.对角线互相垂直的平行四边形是矩形
B.矩形的对角线相等
C.对角线相等的菱形是正方形
D.两组对边分别相等的四边形是平行四边形
2.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=( )
A.60°B.65°C.70°D.75°
3.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是( )
A.①②B.③④C.①②④D.①②③④
4.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )
A.若△ABC为任意三角形,则四边形ADEG是平行四边形
B.若∠BAC=90°,则四边形ADEG是矩形
C.若AC=AB,则四边形ADEG是菱形
D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形
5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.
其中正确的有( )
A.4个B.3个C.2个D.1个
二.填空题
6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为 .
7.如图,正方形ABCD的边长为5,AG=CH=4,BG=DH=3,连接GH,则线段GH的长为 .
8.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为 .
9.如图,已知正方形ABCD的边长为7,点E,F分别在AD、DC上,AE=DF=3,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 .
10.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD= 度.
11.如图,在正方形ABCD的外侧,作等边三角形ABE,则∠DEB的度数为 度.
12.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为 .
13.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE= .
14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE= .
15.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB= .
三.解答题
16.如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.
(1)求证:四边形CDEF是菱形;
(2)当∠ACB= 度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长.
17.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.
(1)求证:四边形ABCD是正方形.
(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.
18.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.
(1)求证:矩形DEFG是正方形;
(2)求AG+AE的值;
(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.
19.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
20.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.
21.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:
(1)如图中四边形ADEG是什么四边形?并说明理由.
(2)当△ABC满足什么条件时,四边形ADEG是矩形?
(3)当△ABC满足什么条件时,四边形ADEG是正方形?
参考答案
一.选择题
1.解:对角线互相垂直的平行四边形是菱形,故选项A错误;
矩形的对角线相等,故选项B正确;
对角线相等的菱形是正方形,故选项C正确;
两组对边分别相等的四边形是平行四边形,故选项D正确;
故选:A.
2.解:∵四边形ABCD是正方形,
∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.
又AE=AE,
∴△ABE≌△ADE(SAS).
∴∠ADE=∠ABE=90°﹣25°=65°.
∴∠AED=180°﹣45°﹣65°=70°.
故选:C.
3.解:过点D作DE⊥AB于E,DF⊥BC于F.
∵两张长方形直尺的宽度相等,
∴DE=DF,
又∵平行四边形ABCD的面积=AB•DE=BC•DF,
∴AB=BC,
∴平行四边形ABCD为菱形.
当∠DAB=90°时,这个四边形是正方形,
∴这个四边形一定是轴对称图形,
故选:C.
4.解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,
∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.
∴∠ABC=∠EBD(同为∠EBA的余角).
在△BDE和△BAC中,
,
∴△BDE≌△BAC(SAS),
∴DE=AC=AG,∠BAC=∠BDE.
∵AD是正方形ABDI的对角线,
∴∠BDA=∠BAD=45°.
∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,
∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD
=360°﹣90°﹣∠BAC﹣45°
=225°﹣∠BAC,
∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,
∴DE∥AG,
∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;
B、∵四边形ABDI和四边形ACHG是正方形,
∴∠DAI=45°,∠GAC=90°,
∵∠BAC=90°,
∴∠DAG=360°﹣45°﹣90°﹣90°=135°,
∵四边形ADEG是平行四边形,
∴四边形ADEG不是矩形,错误,故本选项符合题意;
C、∵四边形ADEG是平行四边形,
∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.
∵AD=AB,
∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;
D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,
∵当AB=AD,即AB=AC时,四边形ADEG是菱形,
∴四边形ADEG是正方形,
即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;
故选:B.
5.解:∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠ADE=90°.
∵CE=DF,
∴AF=DE.
在△ABF和△DAE中,,
∴△ABF≌△DAE.
∴AE=BF,故(1)正确.
∵△ABF≌△DAE,
∴∠AFB=∠AED.
∵∠AED+∠DAE=90°,
∴∠AFB+∠DAE=90°,
∴∠AOF=90°,即AE⊥BF,故(2)正确.
∵△ABF≌△DAE,
∴S△ABF=S△ADE.
∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.
如图所示:过点E作EG⊥AB,则EG=AD.
∵HE>OE,GE>HE,
∴GE>OE.
∴AD>OE,故(3)错误.
故选:B.
二.填空题
6.解:过C点作EF⊥l2,交l1于E点,交l4于F点.
∵l1∥l2∥l3∥l4,EF⊥l2,
∴EF⊥l1,EF⊥l4,
即∠CED=∠BFC=90°.
∵ABCD为正方形,
∴∠BCD=90°.
∴∠DCE+∠BCF=90°.
又∵∠DCE+∠CDE=90°,
∴∠CDE=∠BCF.
在△CDE和△BCF中,
∴△CDE≌△BCF(AAS),
∴BF=CE=2.
∵CF=1,
∴BC2=12+22=5,
即正方形ABCD的面积为5.
故答案为:5.
7.解:如图,延长BG交CH于点E,
在△ABG和△CDH中,
,
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,
∵AG=CH=4,BG=DH=3,AB=5,
∴AG2+BG2=AB2,
∴∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
,
∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=4﹣3=1,
同理可得HE=1,
在Rt△GHE中,GH===,
故答案为:.
8.解:连接CH并延长交AD于P,连接PE,
∵四边形ABCD是正方形,
∴∠A=90°,AD∥BC,AB=AD=BC=2,
∵E,F分别是边AB,BC的中点,
∴AE=CF=×2=1,
∵AD∥BC,
∴∠DPH=∠FCH,
∵∠DHP=∠FHC,
∵DH=FH,
∴△PDH≌△CFH(AAS),
∴PD=CF=1,
∴AP=AD﹣PD=1,
∴PE==,
∵点G,H分别是EC,FD的中点,
∴GH=EP=.
9.解:∵四边形ABCD是正方形,
∴AB=DA,∠BAE=∠ADF=90°,
在△BAE和△ADF中,
,
∴△BAE≌△ADF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=90°,
∴∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
又∵BC=CD=7,DF=3,∠C=90°,
∴CF=4,
∴BF===,
∴GH=,
故答案为:.
10.解:∵∠CBA=90°,∠ABE=60°,
∴∠CBE=150°,
∵四边形ABCD为正方形,三角形ABE为等边三角形
∴BC=BE,
∴∠BEC=15°,
∵∠FBE=∠DBA+∠ABE=105°,
∴∠BFE=60°,
在△CBF和△ABF中,
,
∴△CBF≌△ABF(SAS),
∴∠BAF=∠BCE=15°,
又∠ABF=45°,且∠AFD为△AFB的外角,
∴∠AFD=∠ABF+∠FAB=15°+45°=60°.
故答案为60.
11.解:∵四边形ABCD是正方形
∴AB=AD,∠BAD=90°
∵△ABE是等边三角形
∴AE=AB,∠BAE=∠BEA=60°
∴AD=AE,∠DAE=150°
∴∠AED=∠ADE=(180°﹣∠DAE)=15°
∴∠DEB=∠BEA﹣∠AED=60°﹣15°=45°
故答案为:45.
12.解:∵∠ADE=∠BCE=90°+60°=150°,
AD=BC,DE=CE,
∴△ADE≌△BCE,
∴AE=BE,∴∠EAB=∠EBA.
∵正方形中AD=DC,等边三角形中DC=DE,
∴AD=DE,
∵∠ADE=90°+60°=150°,
∴∠DEA==15°,同理∠CEB=15°,
∴∠AEB=60°﹣15°﹣15°=30°,
∴∠EAB==75°.
故答案为 75°.
13.解:∵四边形ABCD是正方形,
∴∠ACB=45°,AD∥BC,
∵AC=EC,
∴∠E=∠CAE,
∵∠ACB=∠E+∠CAE=2∠E,
∴∠E=∠ACB=22.5°,
∵AD∥BC,
∴∠DAE=∠E=22.5°.
故答案为:22.5°.
14.解:过E作EF⊥DC于F,
∵四边形ABCD是正方形,
∴AC⊥BD,
∵CE平分∠ACD交BD于点E,
∴EO=EF,
在Rt△COE和Rt△CFE中
,
∴Rt△COE≌Rt△CFE(HL),
∴CO=FC,
∵正方形ABCD的边长为1,
∴AC=,
∴CO=AC=,
∴CF=CO=,
∴EF=DF=DC﹣CF=1﹣,
∴DE==﹣1,
另法:因为四边形ABCD是正方形,
∴∠ACB=45°=∠DBC=∠DAC,
∵CE平分∠ACD交BD于点E,
∴∠ACE=∠DCE=22.5°,
∴∠BCE=45°+22.5°=67.5°,
∵∠CBE=45°,
∴∠BEC=67.5°,
∴BE=BC,
∵正方形ABCD的边长为1,
∴BC=1,
∴BE=1,
∵正方形ABCD的边长为1,
∴AC=,
∴DE=﹣1,
故答案为:﹣1.
15.解:如图作FH∥BC交BD于点H.
∵四边形ABCD是正方形,
∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°
∵FH∥BC,
∴∠OHF=∠OBC,∠OFH=∠OCB,
∴∠OHF=∠OFH,
∴OH=OF=1,FH==,
∵BF平分∠OBC,
∴∠HBF=∠FBC=∠BFH,
∴BH=FH=,
∴OB=OC=1+,
∴BC=OB=2+.
故答案为2+.
三.解答题
16.证明:(1)如图,连接EC,交BD于点O
∵BE=BC,BD平分∠ABC
∴EO=CO,BD⊥CE
∴EF=FC,DE=CD,
∵CF∥DE
∴∠DFC=∠FDE,且EO=CO,∠FOC=∠DOE
∴△DOE≌△FOC(AAS)
∴DE=CF
∴EF=FC=CD=DE
∴四边形EFCD是菱形
(2)当∠ACB=120度时,四边形CDEF是正方形,
理由如下:
∵∠ACB=120°,BC=AC
∴∠ABC=∠BAC=30°
∵BD平分∠ABC
∴∠DBC=15°,且BD⊥EC
∴∠BCO=75°
∴∠ACE=45°,
∵四边形EFCD是菱形
∴∠FCD=2∠ACE=90°
∴四边形CDEF是正方形,
∴∠ADE=90°
如图,过点C作CP⊥AB于点P,
∵BC=AC=6,∠ABC=30°,CP⊥AB
∴CP=3,BP=CP=3,AB=2BP=6,
∴AE=AB﹣BE=6﹣6
∵∠A=30°,∠ADE=90°
∴DE=AE=3﹣3
17.(1)证明:∵四边形ABCD是菱形,
∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,
∴∠BAD+∠ABC=180°,
∵∠CAD=∠DBC,
∴∠BAD=∠ABC,
∴2∠BAD=180°,∴∠BAD=90°,
∴四边形ABCD是正方形;
(2)证明:∵四边形ABCD是正方形,
∴AC⊥BD,AC=BD,CO=AC,DO=BD,
∴∠COB=∠DOC=90°,CO=DO,
∵DH⊥CE,垂足为H,
∴∠DHE=90°,∠EDH+∠DEH=90°,
∵∠ECO+∠DEH=90°,
∴∠ECO=∠EDH,
在△ECO和△FDO中,,
∴△ECO≌△FDO(ASA),
∴OE=OF.
18.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.
∵四边形ABCD是正方形,
∴∠EAD=∠EAB,
∵EM⊥AD于M,EN⊥AB于N,
∴EM=EN,
∵∠EMA=∠ENA=∠DAB=90°,
∴四边形ANEM是矩形,
∵EF⊥DE,
∴∠MEN=∠DEF=90°,
∴∠DEM=∠FEN,
∵∠EMD=∠ENF=90°,
∴△EMD≌△ENF,
∴ED=EF,
∵四边形DEFG是矩形,
∴四边形DEFG是正方形.
(2)∵四边形DEFG是正方形,四边形ABCD是正方形,
∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,
∴∠ADG=∠CDE,
∴△ADG≌△CDE(SAS),
∴AG=CE,
∴AE+AG=AE+EC=AC=AD=4.
(3)如图,作EH⊥DF于H.
∵四边形ABCD是正方形,
∴AB=AD=4,AB∥CD,
∵F是AB中点,
∴AF=FB
∴DF==2,
∵△DEF是等腰直角三角形,EH⊥AD,
∴DH=HF,
∴EH=DF=,
∵AF∥CD,
∴AF:CD=FM:MD=1:2,
∴FM=,
∴HM=HF﹣FM=,
在Rt△EHM中,EM==.
19.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,
∴∠MEN=90°,
∵点E是正方形ABCD对角线上的点,
∴EM=EN,
∵∠DEF=90°,
∴∠DEN=∠MEF,
∵∠DNE=∠FME=90°,
在△DEN和△FEM中,
,
∴△DEN≌△FEM(ASA),
∴EF=DE,
∵四边形DEFG是矩形,
∴矩形DEFG是正方形;
(2)CE+CG的值是定值,定值为6,理由如下:
∵正方形DEFG和正方形ABCD,
∴DE=DG,AD=DC,
∵∠CDG+∠CDE=∠ADE+∠CDE=90°,
∴∠CDG=∠ADE,
在∴△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴CE+CG=CE+AE=AC=AB=×3=6是定值.
20.证明:(1)∵四边形ABCD是平行四边形,
∴AO=CO.
∵△ACE是等边三角形,
∴AE=CE.
∴BE⊥AC.
∴四边形ABCD是菱形.
(2)从上易得:△AOE是直角三角形,
∴∠AEB+∠EAO=90°
∵△ACE是等边三角形,
∴∠EAO=60°,
∴∠AEB=30°
∵∠AEB=2∠EAB,
∴∠EAB=15°,
∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.
又∵四边形ABCD是菱形.
∴∠BAD=2∠BAO=90°
∴四边形ABCD是正方形.
21.解:(1)图中四边形ADEG是平行四边形.理由如下:
∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,
∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.
∴∠ABC=∠EBD(同为∠EBA的余角).
在△BDE和△BAC中,
,
∴△BDE≌△BAC(SAS),
∴DE=AC=AG,∠BAC=∠BDE.
∵AD是正方形ABDI的对角线,
∴∠BDA=∠BAD=45°.
∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,
∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD
=360°﹣90°﹣∠BAC﹣45°
=225°﹣∠BAC
∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°
∴DE∥AG,
∴四边形ADEG是平行四边形(一组对边平行且相等).
(2)当四边形ADEG是矩形时,∠DAG=90°.
则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,
即当∠BAC=135°时,平行四边形ADEG是矩形;
(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.
由(2)知,当∠DAG=90°时,∠BAC=135°.
∵四边形ABDI是正方形,
∴AD=AB.
又∵四边形ACHG是正方形,
∴AC=AG,
∴AC=AB.
∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.
北师大版九年级上册3 正方形的性质与判定当堂达标检测题: 这是一份北师大版九年级上册3 正方形的性质与判定当堂达标检测题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学九年级上册3 正方形的性质与判定复习练习题: 这是一份数学九年级上册3 正方形的性质与判定复习练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版九年级上册3 正方形的性质与判定练习: 这是一份初中数学北师大版九年级上册3 正方形的性质与判定练习,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。