江苏省苏州市张家港市梁丰初中2020-2021年初三数学12月课堂检测(含答案)
展开
这是一份初中数学苏科版九年级上册本册综合精品课后复习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初三数学
一、选择题(3*10)
1. 如果,那么下列比例式中正确的是 ( )
A. B. C. D.
2.已知⊙的半径为4cm.若点到圆心的距离为3 cm,则点 ( )
A.在⊙内 B.在⊙上 C.在⊙外 D.与⊙的位置关系无法确定
3. 抛物线y=(x1)2+2的顶点坐标是 ( )
A.(1,2)B.(1,2)C.(1,2)D.(1,2)
4. 在中,.若,则的值为 ( )
A. B. C. D. 3
5.若二次函数的图像经过点、,则、的大小关系( )
A. B. C. D.不能确定
6.已知一个圆锥的底面半径是3cm,高是4cm,则这个圆锥的侧面积是 ( )
A.24cm2 B. 15cm2 C.21cm2 D. 12cm2
7.如图,港口在观测站的正东方向,=4km,某船从港口出发,沿北偏东 方向航行一段距离后到达处,此时从观测站处侧得该船位于北偏东的方向,则该船与观测站之间的距离(即的长)为( )
A. km B. km C. km D. km
(7) (9) (10)
8.对于二次函数y=-x2+2x-3,下列说法正确的是 ( )
A.当x>0,y随x的增大而减少 B.当x=2时,y有最大值-1
C.图像的顶点坐标为(2,-5) D.图像与x轴有两个交点
9.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在格点上,点E在AB的延长线上,以A为圆心,AE为半径画弧,交AD的延长线于点F,且弧EF经过点C,则弧EF的弧长为 ( )
A.58π B. 58π C. 54π D. 54π
10.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,
⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为( )
A.3B.4C.5D.6
二、填空题(3*8)
11.已知,则锐角的度数是 .
12.二次函数与轴的交点为(0,-4),那么= .
13.如图,电线杆上的路灯距离地面8米,身高1. 6米的小明()站在距离电线杆的底部(点)20米的处,则小明的影子长为 米.
14.如图,在中,,则= .
15. 当﹣1≤x≤3时,二次函数y=x2﹣4x+5的最小值是 .
16.如图,在半径为3的圆O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则 tanD=_________
第16题图 第17题图 第18题图
17.如图,在△ABC中,∠ACB=90°,点G是△ABC的重心,且AG⊥CG,CG的延长线
交AB于H.则S△AGH:S△ABC = .
18.如图,AB是⊙O的弦,AB=a,C是圆O上的一个动点,且∠ACB=45∘,若点D. E分别是AB、BC上的点,,则DE的最大值是___________.(用含a的代数式表示)
三、解答题(46分)
19. (10分)(1)计算: (2)解方程:
20.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段
DE上一点,且∠AFE=∠B.
(1)求证△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的长度.
21.(本题8分)某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图像如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?
22.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,
且∠ACP=60∘,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)已知⊙O 的直径AB=6,求图中阴影部分的面积;
23. (本题12分)如图,平面直角坐标系中,二次函数交轴于A(-4,0),B(2,0)在轴上有一点,连接.
(1)求二次函数的表达式;
(2)点是第二象限内抛物线上一动点,求面积最大值并写出此时点的坐标;
(3) 点是第二象限内抛物线上一动点且若,则坐标 .
(直接写出答案)
(备用图)
参考答案
一、选择题
CACBC BCBDA
二、填空
11. 30度 12. -2 13. 5 14. 2
15. 1 16. 17. 1:6 18.
三、解答
19.(1);(2);
20. (1)略 (2)
21. (1)相切 (2)
22. (1)y=-2x+160.
(2)w=(x-30) (-2x+160)=-2(x-55) 2+1250.
∵30≤x≤50,∴x=50时,w最大值=1200.
答:每天的销售单价最多为70元/件时,该商品每天获得的利润不低于800元.
23. (1)
(2) 最大面积,
(3)
相关试卷
这是一份江苏省苏州市张家港市梁丰中学2023-2024学年数学九上期末质量检测试题含答案,共7页。
这是一份2023-2024学年江苏省苏州市张家港市梁丰高级中学数学八上期末检测试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,分式的值为0,则的值是,如果,那么代数式的值是.,在,,,中分式的个数有等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市张家港市梁丰初级中学八上数学期末检测试题含答案,共7页。试卷主要包含了在平面直角坐标系中,点M,如图,已知,则一定是的,点P,如图,设等内容,欢迎下载使用。