初中数学人教版八年级上册13.2.1 作轴对称图形一等奖课件ppt
展开理解图形轴对称变换的性质.
掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.
理解在平面直角坐标系中,已知点关于 x 轴或 y 轴对称的点的坐标的变化规律.
能按要求画出一个平面图形关于某直线对称的图形.
在平面直角坐标系中关于 x 轴或 y 轴对称的点的变化规律和作出与一个图形关于 x 轴或 y 轴对称的图形.
较复杂图形轴对称的画法.
这些图案有什么共同特点?
你能根据这一部分还原整个图案吗?
那么问题来了,怎么画轴对称图形呢?
在一 张半透明的纸的左边部分,画一只左脚印,再把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.
左脚印和右脚印有什么关系?
对称轴是________所在的直线.
图中的PP'与折痕有什么关系?
1.由一个平面图形可以得到它关于一条直线 l 成轴对称的图形,这个图形与原图形的形状、大小____________.
2. 新图形上的每一点,都是原图形上的某一点关于直线l 的____________.
3.连接任意一对对应点的线段被对称轴____________.
如图,已知点A,如何画出点A关于直线l的对称点A'呢?
如图,已知点A,如何画出点A关于直线 l 的对称点A'呢?
1.过点A作直线l的垂线,垂足为点O;
2.在垂线上截OA'=OA .
我们已经知道如何作点关于直线对称,那线段呢?
如图,已知线段AB,如何画出线段AB关于直线 l 的对称线段A’B’呢?
可以先把端点的对称点作出来,
如图,已知线段AB,如何画出线段AB关于直线 l 的对称线A’B’呢?
1.过点A作直线l的垂线,垂足为点O,在垂线上截OA’=OA,点A’就是点A关于直线l的对称点;
2.类似地,作出点B关于直线l的对称点B’;
3.连接A’B’,即为所求.
先找特殊点,然后作对称点,最后连线.
如图,已知△ABC 和直线l,作出与△ABC 关于直线 l 对称的图形.
1.如图,把下列图形补成关于直线l 对称的图形.
2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.
你还记得我们之前学过的平面直角坐标系吗?
给你一个点,你能说出它的坐标吗?
下面我们来做一个小游戏.
如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系.
如图,已知东直门的坐标
你能说出西直门的坐标吗?
你能找到它们关于x轴的对称点吗?
你能说出这些对称点的坐标吗?
每对对称点的坐标有什么规律?
横坐标相等 纵坐标相反
A(2,-3) , B(-1,2) , C(-6,-5) , D( ,1) , E(4,0)
A’(2,3) , B’(-1,-2),C’(-6,5) , D’( ,-1),E’(4,0)
你能找到它们关于y轴的对称点吗?
纵坐标相等 横坐标相反
A(2,-3) ,B(-1,2) , C(-6,-5) , D( ,1) , E(4,0)
A’(-2,-3),B’(1,2) , C’(6,-5) , D’(- ,1),E’(-4,0)
横坐标相等,纵坐标相反
纵坐标相等,横坐标相反
点关于x轴对称有什么规律?
点关于y轴对称有什么规律?
点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为_________.
点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_________.
分别写出下列各点关于x 轴和y 轴对称的点的坐标.
(3,6) (-7,9) (6,-1) (-3,-5) (0,10)
(3,-6) (-7,-9)(6,1) (-3,5) (0,-10)
(-3,6) (7,9) (-6,-1)(3,-5) (0,10)
点M(a, -5)与点N(-2, b)关于x轴对称,则a=_____, b =_____.
点M(a,-5)与点N(-2,b)关于y轴对称,则a=_____,b =_____.
点 P(3a+1,2-a)关于 x 轴的对称点在 y 轴上,则点 P 的坐标为________.
点P(2a+b,-3a)与点P′(8,b+2)若关于x 轴对称,则 a =____,b=____;若关于y 轴对称,则a =____,b=_____.
答案:2,4;6,-20.
已知点A(2m+1,m-3)关于 y 轴的对称点在第四象限,则 m 的取值范围是?
设P(2m-3,3-m)关于 y 轴对称的点在第二象限,试确定整数 m 的值.
如图四边形ABCD的四个顶点坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出与四边形ABCD关于y轴和x轴对称的图形.
画一个图形关于x 轴或y 轴对称的图形的方法和步骤
1.分别写出下列各点关于x 轴和y 轴对称的点的坐标: (-2,6) (1,-2) (-1,3) (-4,-2) (1,0)
如图,在平面直角坐标系中,直线 l 是第一、三象限的角平分线.
关于一、三象限平分线对称
(1) 由图观察易知A(0,2)关于直线 l 的对称点A’的坐标为(2,0),请在图中分别标明B(5,-3),C(-2,5) 关于直线 l 的对称点 B’,C’的位置,并写出它们的坐标: _______, _________.
答案:(3,5),(5,-2).
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线 l 的对称点P’的坐标为________(不必证明)
台球反弹问题有什么特点?
如图,分别作出点P,M,N关于直线x=1的对称点,你能发现它们坐标之间分别有什么关系吗?
答案: 纵坐标不变, 横坐标之和等于1×2.
这节课我们学会了什么?
1.如何作点关于直线的对称点
2.如何作图形关于直线的对称点
这节课我们还学会了什么?
3.点关于坐标轴对称的变化规律.
1. 如图,将各图补成关于直线 l 对称的图形.
2. 分别写出下列各点关于 x 轴和 y 轴对称的点的坐标: (3,6),(-7,9),(6,-1),(-3,-5),(0,10).
3. 如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(1,1),写出点B,C,D的坐标.
5. 根据下列点的坐标的变化,判断它们进行了怎样的运动:
6. 如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示,用坐标描述这个运动,找出小球运动的轨迹上几个关于直线 l 对称的点.如果小球起始时位于(1,0)处,仍按原来方向击球,请你画出这时小球运动的轨迹.
初中人教版13.2.1 作轴对称图形教案配套ppt课件: 这是一份初中人教版13.2.1 作轴对称图形教案配套ppt课件,共17页。PPT课件主要包含了画轴对称图形等内容,欢迎下载使用。
人教版八年级上册13.2.1 作轴对称图形作业ppt课件: 这是一份人教版八年级上册13.2.1 作轴对称图形作业ppt课件,共22页。PPT课件主要包含了答案显示,见习题,答案135°,对称点,垂直平分等内容,欢迎下载使用。
数学八年级上册13.2.1 作轴对称图形习题课件ppt: 这是一份数学八年级上册13.2.1 作轴对称图形习题课件ppt,共16页。