所属成套资源:2021年人教版数学八年级下册 期中复习试卷(含答案)
2021年人教版数学八年级下册 期中复习试卷二(含答案)
展开2021年人教版数学八年级下册 期中复习试卷一.选择题1.要使二次根式有意义,字母x的取值必须满足( )A.x≥0 B. C. D.2.下列运算错误的是( )A. += B. •= C.÷= D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为( )A. cm2 B.2cm2 C.3cm2 D.4cm25.若x=﹣3,则等于( )A.﹣1 B.1 C.3 D.﹣36.下列不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BC B.AB∥CD,AD=BC C.AB∥CD,AD∥BC D.∠A=∠C,∠B=∠D7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是( )A.4 B.3 C.5 D.4.58.如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOB=60°,BD=8cm,则CD的长度为( )A.8cm B.6cm C.4cm D.2cm9.若,则x的值等于( )A.4 B.±2 C.2 D.±4 10.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为( )A.1个 B.2个 C.3个 D.4个二、填空题11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为 .12.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为 三角形.13.已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为 .14.若代数式有意义,则实数x的取值范围是 .15.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 .16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 . 三、解答题17.计算:3﹣9﹣(2﹣)﹣|2﹣5|. 18.已知:实数a,b在数轴上的位置如图所示,化简: +﹣|a﹣b|. 19.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长. 20.已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13,(1)求BC的长度;(2)证明:BC⊥BD. 21.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠AED=∠CFB. 22.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: ===﹣小李的化简如下: ===﹣(注意:式子中括号后面的2为平方)请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简. 23.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远? 24.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长. 25.如图,在Rt△ABC中,∠B=90°,BC=,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是 ,AB的长是 .(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)当t为何值,△BEF的面积是? 参考答案一.细心选一选.(每小题3分,共30分)1.要使二次根式有意义,字母x的取值必须满足( )A.x≥0 B. C. D.【考点】二次根式有意义的条件.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D. 2.下列运算错误的是( )A. += B. •= C.÷= D.(﹣)2=2【考点】二次根式的加减法;二次根式的乘除法.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A. 3.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A. 4.若等边△ABC的边长为2cm,那么△ABC的面积为( )A. cm2 B.2cm2 C.3cm2 D.4cm2【考点】勾股定理;等边三角形的性质.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A. 5.若x=﹣3,则等于( )A.﹣1 B.1 C.3 D.﹣3【考点】二次根式的化简求值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.下列不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BC B.AB∥CD,AD=BC C.AB∥CD,AD∥BC D.∠A=∠C,∠B=∠D【考点】平行四边形的判定.【解答】解:平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断,平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴D能判断;平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴A能判定;平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;故选B. 7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是( )A.4 B.3 C.5 D.4.5【考点】勾股定理;三角形的面积.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B. 8.如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOB=60°,BD=8cm,则CD的长度为( )A.8cm B.6cm C.4cm D.2cm【考点】矩形的性质.【解答】解:∵四边形ABD是矩形,∴BD=AC,OA=OC,OB=OD,∵BD=8cm,∴OD=4cm,∵∠DOC=∠AOB=60°,∴△DOC是等边三角形,∴CD=OD=4cm,故选C. 9.若,则x的值等于( )A.4 B.±2 C.2 D.±4【考点】二次根式的加减法.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C. 10.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为( )A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B. 二、填空题(每小题3分,共计18分) 11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为 3 .【考点】平行四边形的判定;三角形中位线定理.【解答】解:∵D,E,F分别为△ABC三边的中点∴DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE∴四边形ADEF、DECF、DFEB分别为平行四边形故答案为3. 12.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为 直角 三角形.【考点】勾股定理的逆定理;非负数的性质:偶次方;非负数的性质:算术平方根.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角. 13.已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为 4.8cm .【考点】勾股定理.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10(cm),设斜边上的高为h,则直角三角形的面积为×6×8=×10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为:4.8cm.14.若代数式有意义,则实数x的取值范围是 【考点】二次根式有意义的条件;分式有意义的条件.【解答】解:根据题意得:,解得:x≥0且x≠1. 15.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 【考点】勾股定理的应用.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B. 16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 或3 .【考点】翻折变换(折叠问题).【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解. 三、解答题(共计72分)17.(5分)计算:3﹣9﹣(2﹣)﹣|2﹣5|.【考点】二次根式的混合运算.【解答】解:原式=12﹣3﹣2+9+2﹣5=9+4. 18.(6分)已知:实数a,b在数轴上的位置如图所示,化简: +﹣|a﹣b|.【考点】二次根式的性质与化简;实数与数轴.【解答】解:∵a<﹣1,b>1,a<b∴a+1<0,b﹣1>0,a﹣b<0,∴原式=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2 19(6分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】勾股定理;含30度角的直角三角形.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4. 20.(7分)已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13,(1)求BC的长度;(2)证明:BC⊥BD.【考点】勾股定理.【解答】解:(1)∵AB=3,AC=4,AB⊥AC,∴BC=.(2)∵BD=12,CD=13,BC2+BD2=52+122=132=CD2,∴∠CBD=90°.∴BC⊥BD.21(8分)已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】平行四边形的性质.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB. 22.(8分)阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: ===﹣小李的化简如下: ===﹣(注意:式子中括号后面的2为平方)请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.【考点】二次根式的混合运算.【解答】解:(1)小李化简正确,小张的化简结果错误.因为=|﹣|=﹣;(2)原式===﹣1.23.(10分) 如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远? 【考点】勾股定理【解答】(1)∵∠C=90°,AB=2.5,BC=0.7∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米; (2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m) ∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m. 24.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质;全等三角形的判定与性质;等腰三角形的性质;含30度角的直角三角形.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF; (2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6. 25.(12分)如图,在Rt△ABC中,∠B=90°,BC=,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是 10 ,AB的长是 5 .(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)当t为何值,△BEF的面积是?【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理【解答】(1)解:∵在Rt△ABC中,∠C=30°,∴AC=2AB,根据勾股定理得:AC2﹣AB2=BC2,∴3AB2=75,∴AB=5,AC=10; (2)EF与AD平行且相等.证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF.∴四边形AEFD为平行四边形.∴EF与AD平行且相等.(3)解:∵在Rt△CDF中,∠A=30°,∴DF=CD,∴CF=t,又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5﹣t,∴,即:,解得:t=3,t=7(不合题意舍去),∴t=3.故当t=3时,△BEF的面积为2.故答案为:5,10;平行且相等;;3.