所属成套资源:2021年人教版数学八年级下册第一次月考模拟试卷(含答案)
2021年人教版数学八年级下册第一次月考模拟试卷四(含答案)
展开
2021年人教版数学八年级下册第一次月考模拟试卷一.选择题:1.化简二次根式得( )A. B. C.18 D.62.下列各式计算正确的是( )A.8•2=16 B.5•5=5 C.4•2=8 D.4•2=83.三角形的三边长分别为6,8,10,它的最短边上的高为( )A.6 B.4.5 C.2.4 D.84.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A.5 B.25 C. D.5或5.下列各命题的逆命题成立的是( )A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等6.若等边△ABC的边长为2cm,那么△ABC的面积为( )A. cm2 B.2cm2 C.3cm2 D.4cm27.如图,▱ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )A.8.3 B.9.6 C.12.6 D.13.68.等式•=成立的条件是( )A.x>1 B.x<﹣1 C.x≥1 D.x≤﹣19.若a<0,则的值为( )A.1 B.﹣1 C.±1 D.﹣a 10.下列二次根式中,最简二次根式是( )A. B. C. D.二.填空题:11.当 时,有意义.12.直角三角形的三边长为连续偶数,则这三个数分别为 .13.▱ABCD中,若∠A:∠B=2:3,则∠C= 度,∠D= 度.14.是整数,则正整数n的最小值是 .15.在实数范围内分解因式a2﹣6= .16.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来 .三.解答题:17.化简(1)(a>0,b<0) (2). 18.计算(1)﹣+ (2)(﹣)×. 19.如图,在▱ABCD中,∠BAD的平分线AE交DC于点E,若∠DAE=25°,求∠C、∠B度数. 20.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形. 21.如图,点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,试判断四边形EFGH的形状,并证明你的结论. 22.已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形周长. 23.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长. 24.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.
参考答案一.选择题:1.化简二次根式得( )A. B. C.18 D.6【解答】解:原式=×=|﹣3|=3,故选:B. 2.下列各式计算正确的是( )A.8•2=16 B.5•5=5 C.4•2=8 D.4•2=8【解答】解:A、8•2=48,原式计算错误,故本选项错误;B、5•5=25,原式计算错误,故本选项错误;C、4•2=8,原式计算正确,故本选项正确;D、4•2=8,原式计算错误,故本选项错误;故选:C. 3.三角形的三边长分别为6,8,10,它的最短边上的高为( )A.6 B.4.5 C.2.4 D.8【解答】解:由题意知,62+82=102,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为8.故选D. 4.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A.5 B.25 C. D.5或【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D. 5.下列各命题的逆命题成立的是( )A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【解答】解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选:C. 6.若等边△ABC的边长为2cm,那么△ABC的面积为( )A. cm2 B.2cm2 C.3cm2 D.4cm2【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A. 7.如图,▱ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )A.8.3 B.9.6 C.12.6 D.13.6【解答】解:根据平行四边形的中心对称性得:OF=OE=1.3,∵▱ABCD的周长=(4+3)×2=14∴四边形BCEF的周长=×▱ABCD的周长+2.6=9.6. 8.等式•=成立的条件是( )A.x>1 B.x<﹣1 C.x≥1 D.x≤﹣1【解答】解:∵、有意义,∴,∴x≥1.故选:C.[来源:Zxxk.Com] 9.若a<0,则的值为( )A.1 B.﹣1 C.±1 D.﹣a【解答】解:∵a<0,∴=﹣a,∴原式==1.故选:A.[来源:Zxxk.Com] 10.下列二次根式中,最简二次根式是( )A. B. C. D. 【解答】解:A、=2,被开方数含能开得尽方的因数,不是最简二次根式,故A选项错误;B、,满足最简二次根式条件,故B选项正确;C、=,被开方数含分母,不是最简二次根式,故C选项错误;D、=2ab,被开方数含能开得尽方的因数和因式,不是最简二次根式,故D选项错误;故选:B. 二.填空题:11.当 x≥﹣2.5 时,有意义.【解答】解:根据题意得: 2x+5≥0,解得x≥﹣. 12.直角三角形的三边长为连续偶数,则这三个数分别为 6,8,10 .【解答】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x﹣2,x+2,根据勾股定理,得(x﹣2)2+x2=(x+2)2,x2﹣4x+4+x2=x2+4x+4,x2﹣8x=0,x(x﹣8)=0,解得x=8或0(0不符合题意,应舍去),x﹣2=6,x+2=10.所以这三个数分别为6,8,10.故答案为:6,8,10. 13.▱ABCD中,若∠A:∠B=2:3,则∠C= 72 度,∠D= 108 度.【解答】解:根据平行四边形的性质可知,∠A+∠B=180°,∵∠A:∠B=2:3,∴∠A=72°,∠B=108°∴∠C=72°,∠D=108°.故答案为72,108. 14.是整数,则正整数n的最小值是 6 .【解答】解:∵=2,是整数,∴正整数n的最小值是6.故答案为:6. 15.在实数范围内分解因式a2﹣6= (a+)(a﹣) .【解答】解:a2﹣6=(a+)(a﹣).故答案为:(a+)(a﹣). 16.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来 (n≥1) .【解答】解:∵=(1+1); =(2+1);∴=(n+1)(n≥1).故答案为: =(n+1)(n≥1). 三.解答题:17.化简(1)(a>0,b<0)(2).【解答】解:(1)原式==;(2)原式===. 18.计算(1)﹣+ (2)(﹣)×.【解答】解:(1)原式=3﹣2+4=5;(2)原式=(4﹣5)×=﹣×=﹣2. 19.如图,在▱ABCD中,∠BAD的平分线AE交DC于点E,若∠DAE=25°,求∠C、∠B的度数.【解答】解:∵∠BAD的平分线AE交DC于E,∠DAE=25°,∴∠BAD=50°.∴在平行四边形ABCD中:∠C=∠BAD=50°,∠B=180°﹣∠C=130°. 20.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵AE=CF,∴OE=OF.∴四边形BFDE是平行四边形. 21.如图,点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,试判断四边形EFGH的形状,并证明你的结论.【解答】解:四边形EFGH是平行四边形证明:连接AC,如图.∵E,F分别是AB,BC的中点,∴EF是△ABC的中位线,∴EF∥AC,且EF=AC.同理:GH∥AC,且GH=AC,∴EFGH.∴四边形EFGH是平行四边形. 22.已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形的周长.【解答】解:∵b=++4,∴a﹣3≥0且3﹣a≥0,∴a=3,∴b=4,当a为等腰三角形的腰时,则此三角形周长为3+3+4=10,当b为等腰三角形的腰时,则此三角形周长为4+4+3=11. 23.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm. 24.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算: .【解答】解:(1)===﹣;(2)===﹣;(3)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.