所属成套资源:2021中考数学一轮复习集合
- 中考数学压轴题及答案40例第4部分 试卷 2 次下载
- 中考数学压轴题及答案40例第2部分 试卷 2 次下载
- 中考数学压轴题大集合 试卷 1 次下载
- 中考数学压轴综合题(精华20题)WORD打印版 试卷 2 次下载
- 中考数学压轴题及答案40例第8部分 试卷 2 次下载
中考数学压轴题及答案40例第7部分
展开中考数学压轴题及答案40例(7)28.如图,Rt△ABC的顶点坐标分别为A(0,),B(-,),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,),以点D为顶点、y轴为对称轴的抛物线过点B.(1)求该抛物线的解析式;(2)将△ABC沿AC折叠后得到点B的对应点B′,求证:四边形AOCB′是矩形,并判断点B′是否在(1)的抛物线上;(3)延长BA交抛物线于点E,在线段BE上取一点P,过P点作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标,若不存在,说明理由.解:(1)∵抛物线的顶点为D(0,)∴可设抛物线的解析式为y=ax 2+.····························1分∵B(-,)在抛物线上∴a(-)2+=,∴a=.·························3分∴抛物线的解析式为y=x 2+.···················5分(2)∵B(-,),C(1,0)∴BC==又B′C=BC,OA=,∴B′C=OA.·······························6分∵AC===2∴AB===1又AB′=AB,OC=1,∴AB′=OC.·······························7分∴四边形AOCB′是矩形.······································8分∵B′C=,OC=1∴点B′ 的坐标为(1,)······································9分将x=1代入y=x 2+得y=∴点B′ 在抛物线上.········································10分(3)存在·····················································11分理由如下:设直线AB的解析式为y=kx+b,则 解得∴直线AB的解析式为y=·····································12分∵P、F分别在直线AB和抛物线上,且PF∥AD∴设P(m,),F(m,m 2+)∴PF=()-(m 2+)=-m 2++AD==若四边形PADF是平行四边形,则有PF=AD.即-m 2++=解得m1=0(不合题意,舍去),m2=.·····························13分当m=时,=×+=.∴存在点P(,),使四边形PADF是平行四边形.················14分29.如图1,平移抛物线F1:y=x 2后得到抛物线F2.已知抛物线F2经过抛物线F1的顶点M和点A(2,0),且对称轴与抛物线F1交于点B,设抛物线F2的顶点为N.(1)探究四边形ABMN的形状及面积(直接写出结论);(2)若将已知条件中的“抛物线F1:y=x 2”改为“抛物线F1:y=ax 2”(如图2),“点A(2,0)”改为“点A(m,0)”,其它条件不变,探究四边形ABMN的形状及其面积,并说明理由;(3)若将已知条件中的“抛物线F1:y=x 2”改为“抛物线F1:y=ax 2+c”(如图3),“点A(2,0)”改为“点A(m,c)”其它条件不变,求直线AB与轴的交点C的坐标(直接写出结论). 解:(1)四边形ABMN是正方形,其面积为2.·······························1分(2)四边形ABMN是菱形.当m>0时,四边形ABMN的面积为;当<0时,四边形ABMN的面积为-. 2分(说明:如果没有说理过程,探究的结论正确的得2分)理由如下:∵平移抛物线F1后得到抛物线F2,且抛物线F2经过原点O.∴设抛物线F2的解析式为y=ax 2+bx.∵抛物线F2经过点A(m,0),∴am 2+bm=0.由题意可知m≠0,∴b=-am.∴抛物线F2的解析式为y=ax 2-amx.··························3分∴y=a(x-)2-∴抛物线F2的对称轴为直线x=,顶点N(,-).·················4分∵抛物线F2的对称轴与抛物线F1的交点为B,∴点B的横坐标为.∵点B在抛物线F1:y=ax 2上∴yB=a()2=··············································5分设抛物线F2的对称轴与x轴交于点P,如图1.∵a>0,∴BP=.∵顶点N(,-),∴NP=|-|=.∴BP=NP.·································6分∵抛物线是轴对称图形,∴OP=AP.∴四边形ABMN是平行四边形.··················7分∵BN是抛物线F2的对称轴,∴BN⊥OA.∴四边形ABMN是菱形.······································8分∵BN=BP+NP,∴BN=.∵四边形ABMN的面积为×OA·BN=×|m|×∴当m>0时,四边形ABMN的面积为×m×=.···················9分当m<0时,四边形ABMN的面积为×(-m)×=-.···············10分(3)点C的坐标为(0,+c)(参考图2). 30.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.解:(1)由题意,可设抛物线的解析式为y=a(x-2)2+1.∵抛物线经过原点,∴a(0-2)2+1=0,∴a=-.∴抛物线的解析式为y=-(x-2)2+1=-x 2+x.·················3分(2)△AOB和所求△MOB同底不等高,若S△MOB =3S△AOB ,则△MOB的高是△AOB高的3倍,即M点的纵坐标是-3.······································5分∴-x 2+x=-3,整理得x 2-4x-12=0,解得x1=6,x2=-2.∴满足条件的点有两个:M1(6,-3),M2(-2,-3)··············7分(3)不存在.··················································8分理由如下:由抛物线的对称性,知AO=AB,∠AOB=∠ABO.若△OBN∽△OAB,则∠BON=∠BOA=∠BNO.设ON交抛物线的对称轴于A′ 点,则A′ (2,-1).∴直线ON的解析式为y=-x.由x=-x 2+x,得x1=0,x2=6.∴N(6,-3).过点N作NC⊥x轴于C.在Rt△BCN中,BC=6-4=2,NC=3∴NB==.∵OB=4,∴NB≠OB,∴∠BON≠∠BNO,∴△OBN与△OAB不相似.同理,在对称轴左边的抛物线上也不存在符合条件的点.∴在x轴下方的抛物线上不存在点N,使△OBN与△OAB相似.·······10分31.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(1)如图1,过点B作BM⊥x轴于M.由旋转性质知OB=OA=2.∵∠AOB=120°,∴∠BOM=60°.∴OM=OB·cos60°=2×=1,BM=OB·sin60°=2×=.∴点B的坐标为(1,).·························1分(2)设经过A、O、B三点的抛物线的解析式为y=ax 2+bx+c∵抛物线过原点,∴c=0.∴ 解得∴所求抛物线的解析式为y=x 2+x.···························3分(3)存在.···················································4分如图2,连接AB,交抛物线的对称轴于点C,连接OC.∵OB的长为定值,∴要使△BOC的周长最小,必须BC+OC的长最小.∵点A与点O关于抛物线的对称轴对称,∴OC=AC.∴BC+OC=BC+AC=AB.由“两点之间,线段最短”的原理可知:此时BC+OC最小,点C的位置即为所求.设直线AB的解析式为y=kx+m,将A(-2,0),B(1,)代入,得 解得∴直线AB的解析式为y=x+.抛物线的对称轴为直线x==-1,即x=-1.将x=-1代入直线AB的解析式,得y=×(-1)+=.∴点C的坐标为(-1,).·····································6分(4)△PAB有最大面积.········································7分如图3,过点P作y轴的平行线交AB于点D.∵S△PAB =S△PAD+S△PBD=(yD-yP)(xB-xA)=[(x+)-(x 2+x)](1+2)=-x 2-x+=-(x+)2+∴当x=-时,△PAB的面积有最大值,最大值为.················8分此时yP=×(-)2+×(-)=-.∴此时P点的坐标为(-,-).································9分