数学九年级上册21.2.1 配方法学案设计
展开【学习目标】
1.了解配方法的概念,会用配方法解一元二次方程;
2.掌握运用配方法解一元二次方程的基本步骤;
3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.
【要点梳理】
知识点一、一元二次方程的解法---配方法
1.配方法解一元二次方程:
(1)配方法解一元二次方程:
将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
(2)配方法解一元二次方程的理论依据是公式:.
(3)用配方法解一元二次方程的一般步骤:
①把原方程化为的形式;
②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
③方程两边同时加上一次项系数一半的平方;
④再把方程左边配成一个完全平方式,右边化为一个常数;
⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.
要点诠释:
(1)配方法解一元二次方程的口诀:一除二移三配四开方;
(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.
(3)配方法的理论依据是完全平方公式.
知识点二、配方法的应用
1.用于比较大小:
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.
2.用于求待定字母的值:
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.
3.用于求最值:
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.
4.用于证明:
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
要点诠释:
“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.
【典型例题】
类型一、用配方法解一元二次方程
1. (2016•淄博)解方程:x2+4x﹣1=0.
【思路点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.
【答案与解析】
解:∵x2+4x﹣1=0
∴x2+4x=1
∴x2+4x+4=1+4
∴(x+2)2=5
∴x=﹣2±
∴x1=﹣2+,x2=﹣2﹣.
【总结升华】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
举一反三:
【变式】用配方法解方程.
(1)x2-4x-2=0; (2)x2+6x+8=0.
【答案】(1)方程变形为x2-4x=2.
两边都加4,得x2-4x+4=2+4.
利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.
解这个方程,得x-2=或x-2=-.
于是,原方程的根为x=2+或x=2-.
(2)将常数项移到方程右边x2+6x=-8.
两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,
∴ (x+3)2=1.
用直接开平方法,得x+3=±1,
∴ x=-2或x=-4.
类型二、配方法在代数中的应用
2.若代数式,,则的值( )
A.一定是负数 B.一定是正数 C.一定不是负数D.一定不是正数
【答案】B;
【解析】(作差法)
.故选B.
【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.
3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.
【答案与解析】
解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5
=﹣8[x2﹣x+()2]﹣5+8×()2
=﹣8(x﹣)2﹣,
∵(x﹣)2≥0,
∴﹣8(x﹣)2≤0,
∴﹣8(x﹣)2﹣<0,
即﹣8x2+12﹣5的值一定小于0.
【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.
举一反三:【变式】求代数式 x2+8x+17的最小值
【答案】x2+8x+17= x2+8x+42-42+17=(x+4)2+1
∵(x+4)2≥0,
∴当(x+4)2=0时,代数式 x2+8x+17的最小值是1.
4.已知,求的值.
【思路点拨】
解此题关键是把拆成 ,可配成两个完全平方式.
【答案与解析】
将原式进行配方,得
,
即,
∴ 且,
∴ ,.
∴ .
【总结升华】本题可将原式用配方法转化成平方和等于0的形式,进而求出a.b的值.
初中数学人教版九年级上册21.2.3 因式分解法优质导学案及答案: 这是一份初中数学人教版九年级上册21.2.3 因式分解法优质导学案及答案,共6页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。
初中人教版21.1 一元二次方程学案设计: 这是一份初中人教版21.1 一元二次方程学案设计,共7页。学案主要包含了学习目标,知识网络,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。
初中数学人教版九年级上册21.3 实际问题与一元二次方程学案: 这是一份初中数学人教版九年级上册21.3 实际问题与一元二次方程学案,共5页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。