热点02 数学传统文化和实际民生为载体的创新题-2021年高考数学【热点·重点·难点】专练(新高考)
展开热点02 数学传统文化和实际民生为载体的创新题
【命题形式】
1、考查题型主要是选择题和填空题,计算题和证明题比较少,涉及到的知识点主要集中在函数、数列、立体几何证明与计算、复数、组合、三角函数、概率、推理、圆锥曲线。
2、数学文化考查背景总结如下:①以数学名著为考查背景,以中国数学典籍史料中优秀成果为背景。②以数学猜想和定理为命题背景。③以数学名家的故事为命题背景,以数学家的故事,为考查背景,正是对创新精神数学精神的一种传承。④以数学的应用为命题背景。⑤历史名人。⑥历史发展。
3、文化背景的考查在突出所要考查的数学知识的同时,培养学生的数学素养,不仅可以让学生理解数学文化形成数学素养,同时也让学生感受我们古代数学的伟大成就,增强爱国情怀,引导学生了解数学文化体现数学文化以数化人的本质内涵。这是新高考考察的目的,从而这类问题也是新高考必考题型。
4、数学高考题渗透了大量的数学文化,尤其是渗透到中国古代独特的数学题目。但这些题目考查的知识点有限,很多内容并未涉及到。我们现在的社会在飞速发展,无论是科技还是人的思想都不断地变化。为了让学生能够更好地适应未来社会的发展,我们的教育需要及时更新,不仅仅要反映在教材,考试也应该与时俱进,而不再是摸小球,投骰子,算水费这些老古董的模型背景,更应该与时俱进。
比如以科技为背景文化材料都可以作为激发学生学习兴趣的新材料。像2020年12月2日嫦娥五号成功降落在月球上,它里面所涉及的轨道、运动都能成为很好的考查背景材料,而这些发射卫星的基地名称也可以作为命题背景的一大亮眼之处。
除次以外,同样可以结合其他学科知识和实际民生,比如新冠肺炎这些热点问题也可以成为出题的背景,进入数学高考题。
【满分技巧】
1、多掌握数学文化知识
通过对数学文化知识了解使学生对文化素养的提升,做题时能够做到有的放矢,减少对这类问题的恐惧心理。
2、注意数学文化的译文
很多数学文化的题型都是选用的是中国传统数学文化,题目前面都是以文言文的形式出现,而后面都会对给出译文,译文才是本题的关键题意,所以这类题的关键地方是在译文上理解。
3、提炼数学文化所考察的主干知识内容
数学文化题型都是以数学文化为背景来考查高中数学所学的知识内容,我们要首先要明确数学文化反应的是我们所学的哪个知识,再进行解答。把不熟悉的数学文化知识转化为大家熟悉数学问题的结构上,脱去它伪装的外表,露出它的真实目的。
数学文化常涉及到的知识点主要集中在函数、数列、立体几何证明与计算、复数、组合、三角函数、概率、推理、圆锥曲线这些内容,并且都比较基础。
4、紧扣题目信息,发掘问题的本质
无论是以数学传统文化还是实际民生为载体的创新题,都要求学生们在短时内读懂并理解一个陌生的数学问题的情景,然后运用所学的知识和已掌握的解题技能灵活的进行解题。这类问题的关键就是通过认真阅读,深刻理解题意,从中找到数学信息。提炼信息我们可以从这几方面入手:(1)紧扣信息,深刻发掘问题的本质;(2)紧扣信息,类比推理;(3)紧扣信息,探索出本质内容,并进行数学加工;(4)紧扣信息,摆脱传统思维约束,创新思维。
【常考知识】此类考题常与函数、复数、组合、三角函数、概率、推理、圆锥曲线、立体几何等相结合。
【限时检测】(建议用时:60分钟)
一、单选题
1.据记载,欧拉公式是由瑞士著名数学家欧拉发现的,该公式被誉为“数学中的天桥”.特别是当时,得到一个令人着迷的优美恒等式,这个恒等式将数学中五个重要的数(自然对数的底e,圆周率,虚数单位,自然数的单位1和零元0)联系到了一起,有些数学家评价它是“最完美的公式”.根据欧拉公式,若复数z=的共轭复数为,则( )
A. B. C. D.
2.数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比的近似值,黄金分割比还可以表示成,则( ).
A.4 B. C.2 D.
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. B. C. D.
4.我国古代数学家提出的“中国剩余定理”又称“孙子定理”,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将1到2020这2020个整数中能被3除余2且被5除余2的数按从小到大的顺序排成一列,构成数列,那么此数列的项数为( )
A.133 B.134 C.135 D.136
5.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
6.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )
A.3699块 B.3474块 C.3402块 D.3339块
7.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.地支又与十二生肖“鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪”依次对应,“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅……癸酉;甲戌、乙亥、丙子……癸未;甲申、乙酉、丙戌……癸巳;……,共得到60个组合,称六十甲子,周而复始,无穷无尽.2020年是“干支纪年法”中的庚子年,那么2086年出生的孩子属相为( )
A.猴 B.马 C.羊 D.鸡
8.某同学数星星的时候,突然想到了哈雷彗星:信息技术老师给他找了一幅哈雷慧星图片和轨道图片,地理老师告诉他哈雷慧星近日点距离太阳约..,将于2023年12月9日出现的远日点距离太阳约..(..是天文单位,天文学中计量天体之间距离的一种单位,其数值取地球和太阳之间的平均距离,..千米)物理老师告诉他该彗星的周期约76年,质量约.化学老师说:彗核的成分以水冰为主,占70%,它只是个很松散的大雪堆而已,数学老师问:哈雷慧星的轨迹可以近似看成椭圆,那么该椭圆的离心率约是多少呢?( )
A.1.03 B.0.97 C.0.83 D.0.77
9.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A. B. C. D.
10.0-1周期序列在通信技术中有着重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是( )
A. B. C. D.
11.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为( )(ln19≈3)
A.60 B.63 C.66 D.69
12.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A.20° B.40° C.50° D.90°
13.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以为底面矩形的一边,则这样的阳马的个数是( )
A.4 B.8 C.12 D.16
14.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为( )
A. B. C. D.
15.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )
A.440 B.330 C.220 D.110
二、填空题
16.观察下面图形相应的点数,按照这样的规律,第7个图形的点数是__________.
17.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为、、,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为________.
18.《九章算术》言:“勾股以御高深广远,今有弦五尺,勾三尺,问股为几何?其中弦代表直角三角形的斜边,勾、股代表两条直角边,则股为_____尺,若今有弦t尺,勾尺,股尺,则弦为____尺.
19.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.