![2021届二轮复习 导数的简单应用 课时作业(全国通用)第1页](http://www.enxinlong.com/img-preview/3/3/5854823/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021届二轮复习 导数的简单应用 课时作业(全国通用)第2页](http://www.enxinlong.com/img-preview/3/3/5854823/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021届二轮复习 导数的简单应用 课时作业(全国通用)第3页](http://www.enxinlong.com/img-preview/3/3/5854823/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021届二轮复习 导数的简单应用 课时作业(全国通用) 练习
展开
第5讲 导数的简单应用
专题强化训练
1.函数f(x)=x2-ln x的最小值为( )
A. B.1
C.0 D.不存在
解析:选A.因为f′(x)=x-=,且x>0.令f′(x)>0,得x>1;令f′(x)0)在点M处的切线与曲线C2:y=ex+1+1也相切,则t的值为( )
A.4e2 B.4e C. D.
解析:选A.由y=,得y′=,则切线斜率为k=,所以切线方程为y-2=,即y=x+1.设切线与曲线y=ex+1+1 的切点为(x0,y0).由y=ex+1+1,得y′=ex+1,则由ex0+1=,得切点坐标为,故切线方程又可表示为y--1=,即y=x-ln ++1,所以由题意,得-ln ++1=1,即ln =2,解得t=4e2,故选A.
9.(2020·金华十校北京朝阳期末模拟)已知函数f(x)=x3-x2+ax-1,若曲线存在两条斜率为3的切线,且切点的横坐标都大于0,则实数a的取值范围为____________.
解析:由题意知,f(x)=x3-x2+ax-1的导数
f′(x)=2x2-2x+a.
2x2-2x+a=3有两个不等正根,则,
得3<a<.
答案:
10.(2020·湖州市高三期末)定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)<,则不等式f(log2x)>的解集为________.
解析:设g(x)=f(x)-x,
因为f′(x)<,
所以g′(x)=f′(x)-<0,
所以g(x)为减函数,又f(1)=1,
所以f(log2x)>=log2x+,
即g(log2x)=f(log2x)-log2x>
=g(1)=f(1)-=g(log22),
所以log2x<log22,又y=log2x为底数是2的增函数,
所以0<x<2,
则不等式f(log2x)>的解集为(0,2).
答案:(0,2)
11.(2020·绍兴、诸暨北京朝阳期末二模)已知函数f(x)=x3-3x,函数f(x)的图象在x=0处的切线方程是________;函数f(x)在区间[0,2]内的值域是________.
解析:函数f(x)=x3-3x,切点坐标(0,0),导数为y′=3x2-3,切线的斜率为-3,
所以切线方程为y=-3x;
3x2-3=0,可得x=±1,x∈(-1,1),y′<0,函数是减函数,x∈(1,+∞),y′>0函数是增函数,f(0)=0,f(1)=-2,f(2)=8-6=2,
函数f(x)在区间[0,2]内的值域是[-2,2].
答案:y=-3x [-2,2]
12.(2020·台州市高三期末考试)已知函数f(x)=x2-3x+ln x,则f(x)在区间[,2]上的最小值为________;当f(x)取到最小值时,x=________.
解析:f′(x)=2x-3+=(x>0),
令f′(x)=0,得x=,1,
当x∈(,1)时,f′(x)<0,x∈(1,2)时,f′(x)>0,
所以f(x)在区间[,1]上单调递减,在区间[1,2]上单调递增,
所以当x=1时,f(x)在区间[,2]上的最小值为f(1)=-2.
答案:-2 1
13.(2020·唐山二模)已知函数f(x)=ln x-nx(n>0)的最大值为g(n),则使g(n)-n+2>0成立的n的取值范围为________.
解析:易知f(x)的定义域为(0,+∞).
因为f′(x)=-n(x>0,n>0),
当x∈时,f′(x)>0,
当x∈时,f′(x)