2020届二轮(理科数学) 07-2007-2019年新课标全国卷理——立体几何 专题卷(全国通用)
展开
20
20
正视图
20
侧视图
10
10
20
俯视图
2007-2019年新课标全国卷立几题
(2007宁夏卷)
8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
A. B.
C. D.
12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为,,,则( )
A. B. C. D.
18.(本小题满分12分)
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值.
(2008宁夏卷)
12、某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a + b的最大值为( )
A. B. C. 4 D.
15、一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,那么这个球的体积为 _________
18、(本小题满分12分)
如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。
(1) 求DP与CC1所成角的大小;
(2) 求DP与平面AA1D1D所成角的大小。
(2009宁夏卷)
(8) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是
(A) (B)
(C)三棱锥的体积为定值
(D)异面直线所成的角为定值
(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为
(A)48+12 (B)48+24
(C)36+12 (D)36+24
19(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
(2010课标全国卷)
10.设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为
(A) (B) (C) (D)
14.正视图为一个三角形的几何体可以是______(写出三种)
18.(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高 ,E为AD中点
(I)证明:PEBC
(II)若APB=ADB=60°,求直线PA与平面PEH所成角的正弦值
(2011课标全国卷)
6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为
15.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD的体积为________.
18.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
(2012课标全国卷)
7.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为( )
A. B. C. D.
11.已知三棱锥的所有顶点都在球的球面上,△ABC是边长为的正三角形,为球的直径,且;则此棱锥的体积为( )
A. B. C. D.
19.(本小题满分12分)
如图,直三棱柱中,,是棱的中点,
(1)证明: (2)求二面角的大小.
(2013课标全国I卷)
6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )
A、cm3 B、cm3
C、cm3 D、cm3
8、某几何体的三视图如图所示,则该几何体的体积为
. .
. .
18、(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值。
(2013课标全国II卷)
(4)已知m, n为异面直线,m⊥平面a,n⊥平面b . 直线l满足l⊥m,l⊥n,la,lb, 则:
(A)a∥b且l∥a (B)a⊥b且l⊥b
(C)a与b 相交,且交线垂直于l (D)a与b 相交,且交线平行于l
B
C
A
A1
B1
C1
D
E
(A)
(B)
(C)
(D)
(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1, 0, 1),(1, 1, 0),(0, 1, 1),(0, 0, 0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为
18、如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1 = AC = CB = AB.
(Ⅰ)证明:BC1 //平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值
(2014课标全国Ⅰ卷)
12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为
. . .6 .4
19. (本小题满分12分)
如图三棱柱中,侧面为菱形,.
(Ⅰ) 证明:;
(Ⅱ)若,,AB=BC,求二面角的余弦值.
(2014课标全国Ⅱ卷)
6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
A. B. C. D.
11.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为( )
A. B. C. D.
18. (本小题满分12分)
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
(2015课标全国Ⅰ卷)
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
(11)圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则=
(A)1 (B)2 (C)4 (D)8
(18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。
(1)证明:平面AEC⊥平面AFC
(2)求直线AE与直线CF所成角的余弦值
(2015课标全国Ⅱ卷)
(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为
(A) (B) (C) (D)
(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为
A.36π B.64π C.144π D.256π
19.(本小题满分12分)
如图,长方体ABCD—A1B1C1D1中,AB = 16,BC = 10,AA1 = 8,点E,F分别在A1B1,D1C1上,A1E = D1F = 4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形。
D
D1
C1
A1
E
F
A
B
C
B1
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求直线AF与平面α所成的角的正弦值。
(2016课标全国Ⅰ卷)
(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是
(A) (B) (C) (D)
(11)平面过正方体ABCD-A1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m、n所成角的正弦值为
(A) (B) (C) (D)
(18)(本小题满分为12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, ,且二面角D-AF-E与二面角C-BE-F都是.
(I)证明:平面ABEF平面EFDC;
(II)求二面角E-BC-A的余弦值.
(2016课标全国Ⅱ卷)
(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
(A) (B) (C) (D)
(14) 是两个平面,是两条直线,有下列四个命题:
(1)如果,那么.
(2)如果,那么.
(3)如果,那么.
(4)如果,那么与所成的角和与所成的角相等.
其中正确的命题有 . (填写所有正确命题的编号)
19.(本小题满分12分)
如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的正弦值.[来源:gkstk.Com]
[来源:学优高考网]
(2016课标全国Ⅲ卷)
(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )
(A) (B) (C)90 (D)81
(10) 在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是( )
(A)4π (B) (C)6π (D)
(19)(本小题满分12分)
如图,四棱锥中,地面,,,,为线段上一点,,为的中点.
(I)证明平面;
(II)求直线与平面所成角的正弦值.
(2017课标全国Ⅰ卷)
7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为
A.10 B.12 C.14 D.16
16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
(2017课标全国Ⅱ卷)
4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )
A. B. C. D.
10. 已知直三棱柱中,,,,则异面直线与所成角的余弦值为( )
A. B. C. D.
19.(12分)
如图,四棱锥中,侧面为等比三角形且垂直于底面, 是的中点.
(1)证明:直线 平面PAB
(2)点在棱上,且直线与底面所成角为 ,求二面角的余弦值
(2017课标全国Ⅲ卷)
8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()
A. B.
C. D.
16.为空间中两条互相垂直的直线,等腰直角三角形的直角边所在直线与都垂直,斜边以直线为旋转轴旋转,有下列结论:
①当直线与成角时,与成角;
②当直线与成角时,与成角;
③直线与所成角的最小值为;
④直线与所成角的最大值为.
其中正确的是________(填写所有正确结论的编号)
19.(12分)如图,四面体中,是正三角形,是直角三角形.,.
(1)证明:平面平面;
(2)过的平面交于点,若平面把四面体分成体积相等的两部分.求二面角的余弦值.
(2018课标全国Ⅰ卷)
7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为
A. B. C.3 D.2
12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为
A. B. C. D.
18.(12分)
如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
(2018课标全国Ⅱ卷)
9.在长方体中,,,则异面直线与所成角的余弦值为
A. B. C. D.
16.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.
20.(12分)
如图,在三棱锥中,,,为的中点.
(1)证明:平面;
(2)若点在棱上,且二面角为,求与平面所成角的正弦值.
(2018课标全国Ⅲ卷)
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为
A. B. C. D.
19.(12分)
如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.
(1)证明:平面平面;
(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.
(2019课标全国Ⅰ卷)
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为
A. B. C. D.
18.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
(2019课标全国Ⅱ卷)
7.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行
C.α,β平行于同一条直线 D.α,β垂直于同一平面
16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)
17.(12分)
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
(2019课标全国Ⅲ卷)
8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则
A.BM=EN,且直线BM、EN 是相交直线
B.BM≠EN,且直线BM,EN 是相交直线
C.BM=EN,且直线BM、EN 是异面直线
D.BM≠EN,且直线BM,EN 是异面直线
16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O—EFGH后所得几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________.
19.(12分)
图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B-CG-A的大小.