2021年中考数学专题复习 专题49 中考数式图规律型试题解法(学生版)
展开专题49 中考数式图规律型试题解法
给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.这类问题成为探索规律性问题。主要采用归纳法解决。
1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.
2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.
3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.
4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.
5.解题方法
规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.
【例题1】(2019安徽合肥)观察下列各组式子:
①;
②;
③
(1)请根据上面的规律写出第 个式子;
(2)请写出第个式子,并证明你发现的规律.
【对点练习】(2019湖南益阳)观察下列等式:
①3﹣2=(﹣1)2,
②5﹣2=(﹣)2,
③7﹣2=(﹣)2,
…
请你根据以上规律,写出第6个等式 .
【例题2】(2019湖北咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是 .
【对点练习】(2019湖南常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( )
A.0 B.1 C.7 D.8
【例题3】(2020贵州黔西南)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为________.
【对点练习】如图,将△ABC沿着过BC的中点D的直线折叠,使点B落在AC边上的B1处,称为第一次操作,折痕DE到AC的距离为h1;还原纸片后,再将△BDE沿着过BD的中点D1的直线折叠,使点B落在DE边上的B2处,称为第二次操作,折痕D1E1到AC的距离记为h2;按上述方法不断操作下去……经过第n次操作后得到折痕Dn﹣1En﹣1,到AC的距离记为hn.若h1=1,则hn的值为( )
A.1+ B.1+ C.2﹣ D.2﹣
一、选择题
1.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )
A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
2.如图所示,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )
A.71 B.78 C.85 D.89
3.(2019•湖北武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是( )
A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a
4.(2019•四川省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是( )
A.5 B.﹣ C. D.
5.(2019成都)如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n盆花,每个图案花盆总数是S,按此推断S与n的关系式为( )
A.S=3n B.S=3(n﹣1) C.S=3n﹣1 D.S=3n+1
6.(2019云南)按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )
A.(-1)n-1x2n-1 B.(-1)nx2n-1
C.(-1)n-1x2n+1 D.(-1)nx2n+1
7.(2019河南)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:
①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;
②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( )
A.22019 B. C. D.
8.(2019湖北宜昌)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )
A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
9.(2019•湖北鄂州)如图,在平面直角坐标系中,点A1、A2、A3…An在x轴上,B1、B2、B3…Bn在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…Sn.则Sn可表示为( )
A.22n B.22n﹣1 C.22n﹣2 D.22n﹣3
二、填空题
10.(2019湖北咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是 .
11.(2019海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .
12.(2019•湖北省咸宁市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是 .
13.(2019•四川省广安市)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为 .
14.(2019•甘肃庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是 .
15.(2020云南模拟)观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是 .
16.(2019湖南怀化)探索与发现:下面是用分数(数字表示面积)砌成的“分
数墙”,则整面“分数墙”的总面积是 .
17.(2019·贵州安顺)如图,将从1开始的自然数按下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 .
18.(2019•海南省)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .
19.(2019•贵州铜仁)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是________.(n为正整数)
A.(﹣1)n•. B.(﹣1)n+1•. C.(﹣1)n-1•. D. .
20.如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为 (结果用含正整数n的代数式表示)
21.(2019齐齐哈尔)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则Sn= .
22.已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,Sn=;当n为大于1的偶数时,Sn=﹣Sn﹣1﹣1),按此规律,S2018= .
23.如图,把Rt△OAB置于平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(3,0),点P是Rt△OAB内切圆的圆心.将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,依此规律,第2019次滚动后,Rt△OAB内切圆的圆心P2019的坐标是 .
24.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 .
25.(2020通辽模拟)一列数x1,x2,x3,…,其中x1=,xn=(n为不小于2的整数),则x2015= .
26.(2020随州模拟)观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.
27.(2019•山东泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是 .
28.(2019•山东潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为 .(n为正整数)
三、解答题
29.(2019•四川自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:
设S=1+2+22+…+22017+22018①
则2S=2+22+…+22018+22019②
②﹣①得2S﹣S=S=22019﹣1
∴S=1+2+22+…+22017+22018=22019﹣1
请仿照小明的方法解决以下问题:
(1)1+2+22+…+29=________;
(2)3+32+…+310=________;
(3)求1+a+a2+…+an的和(a>0,n是正整数,请写出计算过程).
30.(2019湖南张家界)阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an.所以,数列的一般形式可以写成:a1,a2,a3,…,an,….
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.
根据以上材料,解答下列问题:
(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列a1,a2,a3,…,an…,是等差数列,且公差为d,那么根据定义可得到a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,an﹣an﹣1=d,….
所以
a2=a1+d
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,
……
由此,请你填空完成等差数列的通项公式:an=a1+( )d.
(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?
31. (2019•四川自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:
设S=1+2+22+…+22017+22018①
则2S=2+22+…+22018+22019②
②﹣①得2S﹣S=S=22019﹣1
∴S=1+2+22+…+22017+22018=22019﹣1
请仿照小明的方法解决以下问题:
(1)1+2+22+…+29= ;
(2)3+32+…+310= ;
(3)求1+a+a2+…+an的和(a>0,n是正整数,请写出计算过程).
2021年中考数学专题复习 专题53 中考几何动态试题解法(教师版含解析): 这是一份2021年中考数学专题复习 专题53 中考几何动态试题解法(教师版含解析),共42页。教案主要包含了动态问题概述数,平移,动点问题常见的四种类型解题思路,解决动态问题一般步骤等内容,欢迎下载使用。
2021年中考数学专题复习 专题50 中考数学新定义型试题解法(教师版含解析): 这是一份2021年中考数学专题复习 专题50 中考数学新定义型试题解法(教师版含解析),共39页。教案主要包含了对点练习等内容,欢迎下载使用。
2021年中考数学专题复习 专题49 中考数式图规律型试题解法(教师版含解析): 这是一份2021年中考数学专题复习 专题49 中考数式图规律型试题解法(教师版含解析),共33页。教案主要包含了对点练习等内容,欢迎下载使用。