所属成套资源:【精品讲义】 2021年中考数学专题复习 一轮复习(教师版含解析)【55份资料】有学生版
2021年中考数学专题复习 专题12 韦达定理及其应用(教师版含解析)
展开这是一份2021年中考数学专题复习 专题12 韦达定理及其应用(教师版含解析),共13页。教案主要包含了对点练习等内容,欢迎下载使用。
专题12 韦达定理及其应用
1.一元二次方程根与系数的关系(韦达定理)
如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面:
(1)验根;
(2)已知方程的一根,求另一根;
(3)求某些代数式的值;
(4)求作一个新方程。
【例题1】(2020•泸州)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是 .
【答案】2
【分析】根据根与系数的关系求解.
【解析】根据题意得则x1+x2=4,x1x2=﹣7
所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2
【对点练习】(2019湖北仙桃)若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为( )
A.12 B.10 C.4 D.﹣4
【答案】A
【解析】∵方程x2﹣2x﹣4=0的两个实数根为α,β,
∴α+β=2,αβ=﹣4,
∴α2+β2=(α+β)2﹣2αβ=4+8=12
【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为 .
【答案】-2
【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.
【解析】∵a=1,b=﹣k,c=﹣2,
∴x1•x22.
∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,
∴另一个根为﹣2÷1=﹣2.
【对点练习】 已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5
【解析】设方程的另一根为x1,则由方程的根与系数关系得:
解得:
【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。
【对点练习】(2019年湖北省荆门市)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为 .
【答案】1
【解析】根据根与系数的关系结合(x1﹣1)(x2﹣1)=8k2,可得出关于k的一元二次方程,解之即可得出k的值,根据方程的系数结合根的判别式△>0,可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而即可确定k值,此题得解.
∵x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个实数根,
∴x1+x2=﹣(3k+1),x1x2=2k2+1.
∵(x1﹣1)(x2﹣1)=8k2,即x1x2﹣(x1+x2)+1=8k2,
∴2k2+1+3k+1+1=8k2,
整理,得:2k2﹣k﹣1=0,
解得:k1=﹣,k2=1.
∵关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,
∴△=(3k+1)2﹣4×1×(2k2+1)>0,
解得:k<﹣3﹣2或k>﹣3+2,
∴k=1.
【例题3】(2020•随州)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.
(1)求证:无论m取何值,此方程总有两个不相等的实数根;
(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=1,求m的值.
【答案】见解析。
【分析】(1)根据根的判别式得出△=(2m+1)2﹣4×1×(m﹣2)=4m2+9>0,据此可得答案;
(2)根据根与系数的关系得出x1+x2=﹣(2m+1),x1x2=m﹣2,代入x1+x2+3x1x2=1得出关于m的方程,解之可得答案.
【解析】(1)∵△=(2m+1)2﹣4×1×(m﹣2)
=4m2+4m+1﹣4m+8
=4m2+9>0,
∴无论m取何值,此方程总有两个不相等的实数根;
(2)由根与系数的关系得出,
由x1+x2+3x1x2=1得﹣(2m+1)+3(m﹣2)=1,
解得m=8.
【对点练习】(2019▪湖北黄石)已知关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根.
(1)求m的取值范围;
(2)若该方程的两个实数根为x1.x2,且|x1﹣x2|=4,求m的值.
【答案】见解析。
【解析】根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1﹣x2|=4可得出关于m的一元一次方程,解之即可得出m的值.
(1)∵关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根,
∴△=(﹣6)2﹣4×1×(4m+1)≥0,
解得:m≤2.
(2)∵方程x2﹣6x+(4m+1)=0的两个实数根为x1.x2,
∴x1+x2=6,x1x2=4m+1,
∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=42,即32﹣16m=16,
解得:m=1.
【例题4】(2020湖北黄石模拟)已知方程的两根,求作以为两根的方程。
【答案】
【解析】由题意
故所求方程是:
即
【对点练习】(2019山东淄博模拟)若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是( )
A.x2﹣3x+2=0 B.x2+3x﹣2=0 C.x2+3x+2=0 D.x2﹣3x﹣2=0
【答案】A.
【解析】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.利用完全平方公式计算出x1x2=2,然后根据根与系数的关系写出以x1,x2为根的一元二次方程.
∵x12+x22=5,
∴(x1+x2)2﹣2x1x2=5,
而x1+x2=3,
∴9﹣2x1x2=5,
∴x1x2=2,
∴以x1,x2为根的一元二次方程为x2﹣3x+2=0.
一、选择题
1. (2019•江苏泰州)方程2x2+6x﹣1=0的两根为x1、x2则x1+x2等于( )
A.﹣6 B.6 C.﹣3 D.3
【答案】C.
【解析】根据根与系数的关系即可求出答案.
由于△>0,
∴x1+x2=﹣3,
2. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是( )
A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2
【答案】D
【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法.
3.(2019•广西贵港)若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,
则m等于( )
A.﹣2 B.﹣3 C.2 D.3
【答案】B.
【解析】利用一元二次方程根与系数的关系得到α+β=2,αβ=m,再化简+=,代入可求解;
α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,
∴α+β=2,αβ=m,
∵+===﹣,
∴m=﹣3
二、填空题
4.(2020•内江)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为 .
【答案】.
【分析】把x=﹣1代入原方程求出m的值,进而确定关于x的一元二次方程,解出方程的根即可.
【解析】把x=﹣1代入原方程得,
(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,
解得,m=4,m=1(不合题意舍去),
当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,
解得,x1=﹣1,x2=-1/3
5.(2019年江西省)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= .
【答案】0
【解析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.直接根据根与系数的关系求解.
∵x1、x2是方程x2﹣x﹣1=0的两根,
∴x1+x2=1,x1×x2=﹣1,
∴x1+x2+x1x2=1﹣1=0.
6.(2019年四川攀枝花)已知x1,x2是方程x2﹣2x﹣1=0的两根,则x12+x22= .
【答案】6
【解析】根据根与系数的关系变形后求解.
∵x1、x2是方程x2﹣2x﹣1=0的两根,
∴x1+x2=2,x1×x2=﹣1,
∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣1)=6.
7.(2019年四川成都)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为 .
【答案】-2
【解析】根据“x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.
根据题意得:x1+x2=﹣2,x1x2=k﹣1,
+﹣x1x2
=﹣3x1x2
=4﹣3(k﹣1)=13
8.(2019四川泸州)已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是 .
【答案】16
【解析】考查一元二次方程根与系数的关系
∵x1,x2是一元二次方程x2﹣x﹣4=0的两实根,
∴x1+x2=1,x1x2=﹣4,
∴(x1+4)(x2+4)
=x1x2+4x1+4x2+16
=x1x2+4(x1+x2)+16
=﹣4+4×1+16
=﹣4+4+16
=16
三、解答题
9.(2020•鄂州)已知关于x的方程x2﹣4x+k+1=0有两实数根.
(1)求k的取值范围;
(2)设方程两实数根分别为x1、x2,且x1x2﹣4,求实数k的值.
【答案】见解析。
【分析】(1)根据根的判别式即可求出答案.
(2)根据根与系数的关系即可求出答案.
【解析】(1)△=16﹣4(k+1)=16﹣4k﹣4=12﹣4k≥0,
∴k≤3.
(2)由题意可知:x1+x2=4,x1x2=k+1,
∵x1x2﹣4,
∴x1x2﹣4,
∴,
∴k=5或k=﹣3,
由(1)可知:k=5舍去,
∴k=﹣3.
10.(2020•南充)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.
(1)求k的取值范围.
(2)是否存在实数k,使得等式k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.
【答案】见解析。
【分析】(1)根据方程的系数结合△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合k﹣2,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.
【解析】(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,
∴△=(﹣2)2﹣4×1×(k+2)≥0,
解得:k≤﹣1.
(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,
∴x1+x2=2,x1x2=k+2.
∵k﹣2,
∴k﹣2,
∴k2﹣6=0,
解得:k1,k2.
又∵k≤﹣1,
∴k.
∴存在这样的k值,使得等式k﹣2成立,k值为.
11. (2019黑龙江绥化)已知关于x的方程kx2-3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.
【答案】见解析。
【解析】根据根的判别式列出不等式,即可求得k的范围;由根与系数的关系,得到方程,即可解得k的值.
(1)当k=0时,方程是一元一次方程,有实数根,符合题意;当k≠0时,方程是一元二次方程,由题意得=9-4k≥0,∴k≤,综上所述,k的取值范围是k≤.
(2)∵x1和x2是该方程的两个实数根,∴x1+x2=,x1x2=,∵x1+x2+x1x2=4,∴+=4,解得k=1,经检验,k=1是原分式方程的解,且1≤,∴k的值为1.
12.(2019孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.
(1)若a为正整数,求a的值;
(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.
【答案】(1)a=1,2(2)a=﹣1.
【解析】根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到
△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;
根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.
(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,
∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,
解得:a<3,
∵a为正整数,
∴a=1,2;
(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,
∵x12+x22﹣x1x2=16,
∴(x1+x2)2﹣x1x2=16,
∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,
解得:a1=﹣1,a2=6,
∵a<3,
∴a=﹣1
13.已知:x1、x2是两个不相等的实数,且满足,那么求的值。
【答案】2
【解析】由两个条件可得出为方程的两不等实根,再对所求代数式配方变形。
由题意,为的两个不等实根
因而有
又
14. 已知关于x的一元二次方程与有一个相同的根,求k的值。
【答案】0或 -5
【解析】设方程两根α、β,方程的两根,则有:
由
当时,代入
当时,由
代入
则
代入
把代入<2>中,
或
相关教案
这是一份2021年中考数学专题复习 专题51 勾股定理的多种证明方法(教师版含解析),共20页。教案主要包含了代数和几何紧密结合等内容,欢迎下载使用。
这是一份2021年中考数学专题复习 专题22 三角形中位线定理应用问题(教师版含解析),共12页。教案主要包含了对点练习等内容,欢迎下载使用。
这是一份2021年中考数学专题复习 专题21 多边形内角和定理的应用(教师版含解析),共13页。教案主要包含了三角形,多边形,简答题等内容,欢迎下载使用。