2021年中考数学专题复习 专题45 待定系数法(教师版含解析)
展开专题45 待定系数法
1.待定系数法的含义
一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
2. 待定系数法的应用
(1)分解因式
待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。在初中竞赛中经常出现。
a.确定所求问题含待定系数的解析式。
b.根据恒等条件,列出一组含待定系数的方程。
c.解方程或消去待定系数,从而使问题得到解决。
(2)求函数解析式
初中阶段主要有正比例函数、反比例函数、一次函数、二次函数这几类函数,前面三种分别可设y=kx,
y=k/x,y=kx+b的形式(其中k、b为待定系数,且k≠0).而二次函数可以根据题目所给条件的不同,设成y=ax2+bx+c(a、b、c为待定系数),y=a (x-h) 2+k(a、k、h为待定系数),y=a (x-x1)(x-x2)( a、x1、x2为待定系数)三类形式.根据题意(可以是语句形式,也可以是图象形式),确定出h、k、a、c、b、x1、x2等待定系数.一般步骤如下:
a.写出函数解析式的一般式,其中包括未知的系数;
b.把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组。
c.解方程(组)求出待定系数的值,从而写出函数解析式。
(3)解方程
例如:已知一元二次方程的两根为x1、x2,求二次项系数为1的一元二次方程时,可设该方程为x2+mx+n=0,则有(x-x1)(x-x2)=0,即x2-(x1+x2)x+x1x2=0,对应相同项的系数得m=-(x1+x2),n=x1x2,所以所求方程为:x2-(x1+x2)x+x1x2=0.
(4)分式展开
首先用未知数表示化为部分分式和的形式,展开后,根据分子、分母的多项式分别相等可列出含有未知数的方程组,解方程组,带入所设的部分和可得结果。也可以用代值法求系数。
【例题1】(2020•上海)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )
A.y=2x B.y=-2x C.y=8x D.y=-8x
【答案】D
【分析】已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=kx,再将点的坐标代入求出待定系数k的值,从而得出答案.
【解析】设反比例函数解析式为y=kx,
将(2,﹣4)代入,得:﹣4=k2,
解得k=﹣8,
所以这个反比例函数解析式为y=-8x,
【对点练习】(2020乌鲁木齐模拟)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是( )
A. 2 B. 3 C. 5 D. 7
【答案】D.
【解析】设OA=3a,则OB=4a,
设直线AB的解析式是y=kx+b,
则根据题意得:,
解得:,
则直线AB的解析式是y=﹣x+4a,
直线CD是∠AOB的平分线,则OD的解析式是y=x.
根据题意得:,
解得:
则D的坐标是(,),
OA的中垂线的解析式是x=,则C的坐标是(,),则k=.
∵以CD为边的正方形的面积为,
∴2(﹣)2=,
则a2=,
∴k=×=7.
【点拨】本题考查了待定系数法求函数解析式,正确求得C和D的坐标是解决本题的关键.
设OA=3a,则OB=4a,利用待定系数法即可求得直线AB的解析式,直线CD的解析式是y=x,OA的中垂线的解析式是x=,解方程组即可求得C和D的坐标,根据以CD为边的正方形的面积为,即CD2=,据此即可列方程求得a2的值,则k即可求解.
【例题2】(2020•遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.
(1)求双曲线y=kx(k≠0)和直线DE的解析式.
(2)求△DEC的面积.
【答案】见解析。
【分析】(1)作DM⊥y轴于M,通过证得△AOB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=kx(k≠0)和直线DE的解析式.
(2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.
【解析】∵点A的坐标为(0,2),点B的坐标为(1,0),
∴OA=2,OB=1,
作DM⊥y轴于M,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴∠OAB+∠DAM=90°,
∵∠OAB+∠ABO=90°,
∴∠DAM=∠ABO,
在△AOB和△DMA中
∠ABO=∠DAM∠AOB=∠DMA=90°AB=DA,
∴△AOB≌△DMA(AAS),
∴AM=OB=1,DM=OA=2,
∴D(2,3),
∵双曲线y═kx(k≠0)经过D点,
∴k=2×3=6,
∴双曲线为y=6x,
设直线DE的解析式为y=mx+n,
把B(1,0),D(2,3)代入得m+n=02m+n=3,解得m=3n=-3,
∴直线DE的解析式为y=3x﹣3;
(2)连接AC,交BD于N,
∵四边形ABCD是正方形,
∴BD垂直平分AC,AC=BD,
解y=3x-3y=6x得x=2y=3或x=-1y=-6,
∴E(﹣1,﹣6),
∵B(1,0),D(2,3),
∴DE=(2+1)2+(3+6)2=310,DB=(2-1)2+32=10,
∴CN=12BD=102,
∴S△DEC=12DE•CN=12×310×102=152.
【对点练习】(2019湖北黄冈)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).
(1)求经过A、C、D三点的抛物线的解析式;
(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;
(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;
(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.
【答案】见解析。
【解析】(1)设函数解析式为y=ax2+bx+c,
将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得
,
∴,
∴y=﹣﹣x+2;
(2)∵△PAM≌△PBM,
∴PA=PB,MA=MB,
∴点P为AB的垂直平分线与抛物线的交点,
∵AB=2,
∴点P的纵坐标是1,
∴1=﹣﹣x+2,
∴x=﹣1+或x=﹣1﹣,
∴P(﹣1﹣,1)或P(﹣1+,1);
(3)CM=t﹣2,MG=CM=2t﹣4,
MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,
MF=MD=4﹣t,
∴BF=4﹣4+t=t,
∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;
当t=时,S最大值为;
(3)设点Q(m,0),直线BC的解析式y=﹣x+2,
直线AQ的解析式y=﹣(x+2)+2,
∴K(0,),H(,),
∴OK2=,OH2=+,HK2=+,
①当OK=OH时,=+,
∴m2﹣4m﹣8=0,
∴m=2+2或m=2﹣2;
②当OH=HK时,+=+,
∴m2﹣8=0,
∴m=2或m=﹣2;
③当OK=HK时,=+,不成立;
综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);
【点拨】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.
一、选择题
1.(2020•乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是( )
A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣4
【答案】C
【分析】根据待定系数法求得直线的解析式,然后求得函数y=2时的自变量的值,根据图象即可求得.
【解析】∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),
∴2k+b=0b=1,解得k=-12b=1
∴直线为y=-12x+1,
当y=2时,2=-12x+1,解得x=﹣2,
由图象可知:不等式kx+b≤2的解集是x≥﹣2
2.(2019桂林)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )
A.y=x+ B.y=x+ C.y=x+1 D.y=x+
【答案】D.
【解析】由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),
∴AC=7,DO=3,
∴四边形ABCD分成面积=AC×(|yB|+3)==14,
可求CD的直线解析式为y=﹣x+3,
设过B的直线l为y=kx+b,
将点B代入解析式得y=kx+2k﹣1,
∴直线CD与该直线的交点为(,),
直线y=kx+2k﹣1与x轴的交点为(,0),
∴7=×(3﹣)×(+1),
∴k=或k=0,
∴k=,
∴直线解析式为y=x+
3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2 B.150m2 C.330m2 D.450m2
【答案】B
【解析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.如图,
设直线AB的解析式为y=kx+b,则
,
解得.
故直线AB的解析式为y=450x﹣600,
当x=2时,y=450×2﹣600=300,
300÷2=150(m2).
答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.
4. 已知关于x的分式方程=1的解是非正数,则a的取值范围是( )
A.a≤-1 B.a≤-1,且a≠-2 C.a≤1,且a≠-2 D.a≤1
【解析】去分母,得a+2=x+1,
解得x=a+1.
∵x≤0.且x+1≠0,
∴a+1≤0,且a+1≠-1,
∴a≤-1,且a≠-2,
∴a≤-1,且a≠2.故选B.
5.(2019•浙江绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于( )
A.﹣1 B.0 C.3 D.4
【答案】C.
【解析】设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
∴
∴,
∴y=3x+1,
将点(a,10)代入解析式,则a=3
二、填空题
6.(2020年浙江金华模拟)如图,在平面直角坐标系中,菱形OBCD的边OB在轴正半轴上,反比例函数的图象经过该菱形对角线的交点A,且与边BC交于点F. 若点D的坐标为(6,8),则点F的坐标是
【答案】.
【解析】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.
∵菱形OBCD的边OB在轴正半轴上,点D的坐标为(6,8),
∴.∴点B的坐标为(10,0),点C的坐标为(16,8).
∵菱形的对角线的交点为点A,∴点A的坐标为(8,4).
∵反比例函数的图象经过点A,∴.
∴反比例函数为.
设直线的解析式为,∴.
7.若一个二次函数的二次项系数为-1,且图象的顶点坐标为(0,-3).则这个二次函数的表达式为________.
【答案】y=﹣x2﹣3
【解析】∵抛物线二次项系数为-1,顶点坐标为(0,-3),
∴抛物线的顶点式为y=-(x-0)2-3,
即y=-x2-3
故答案为:y=-x2-3。
三、解答题
8.(2020•苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:
(1)截止到6月9日,该商店销售这种水果一共获利多少元?
(2)求图象中线段BC所在直线对应的函数表达式.
日期
销售记录
6月1日
库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).
6月9日
从6月1日至今,一共售出200kg.
6月10、11日
这两天以成本价促销,之后售价恢复到10元/kg.
6月12日
补充进货200kg,成本价8.5元/kg.
6月30日
800kg水果全部售完,一共获利1200元.
【答案】见解析。
【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;
(2)设B点坐标为(a,400),根据题意列方程求出点B的坐标,设线段BC所在直线对应的函数表达式为y=kx+b,利用待定系数法解答即可.
【解析】(1)200×(10﹣8)=400(元)
答:截止到6月9日,该商店销售这种水果一共获利400元;
(2)设点B坐标为(a,400),根据题意得:
(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,
解这个方程,得a=350,
∴点B坐标为(350,400),
设线段BC所在直线对应的函数表达式为y=kx+b,则:
350k+b=400800k+b=1200,解得k=169b=-20009,
∴线段BC所在直线对应的函数表达式为y=169x-20009.
9.(2020•陕西)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.
(1)求y与x之间的函数关系式;
(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?
【分析】(1)分段函数,利用待定系数法解答即可;
(2)利用(1)的结论,把y=80代入求出x的值即可解答.
【解析】(1)当0≤x≤15时,设y=kx(k≠0),
则:20=15k,
解得k=43,
∴y=43x;
当15<x≤60时,设y=k′x+b(k≠0),
则:20=15k'+b170=60k'+b,
解得k'=103b=-30,
∴y=103x-30,
∴y=43x(0≤x≤15)103x-30(15<x≤60);
(2)当y=80时,80=103x-30,解得x=33,
33﹣15=18(天),
∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.
10.(2020•河北)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.
x
﹣1
0
y
﹣2
1
(1)求直线1的解析式;
(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;
(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.
【分析】(1)根据待定系数法求得即可;
(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;
(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.
【解析】(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,
∴-b+k=-2k=1,解得k=1b=3,
∴直线1′的解析式为y=3x+1;
∴直线1的解析式为y=x+3;
(2)如图,解y=x+3y=3x+1得x=1y=4,
∴两直线的交点为(1,4),
∵直线1′:y=3x+1与y轴的交点为(0,1),
∴直线l'被直线l和y轴所截线段的长为:12+(4-1)2=10;
(3)把y=a代入y=3x+1得,a=3x+1,解得x=a-13;
把y=a代入y=x+3得,a=x+3,解得x=a﹣3;
当a﹣3+a-13=0时,a=52,
当12(a﹣3+0)=a-13时,a=7,
当12(a-13+0)=a﹣3时,a=175,
∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.
11.已知:,求A、B、C的值。
【答案】A=、B=、C=.
【解析】去分母,得
x2-x+2= A(x-3)(x+2)+Bx(x+2)+Cx(x-3).
根据恒等式定义,选择x的适当特定值,带入恒等式可直接求出A,B,C的值,
当x=0时,有2=-6A,得A=;
当x=3时,有8=15B,得B=;
当x=-2时,有8=10C,得C=.
12.〔2020上海模拟〕某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y〔万元/吨〕与生产数量x〔吨〕的函数关系式如下图、
〔1〕求y关于x的函数解析式,并写出它的定义域;
〔2〕当生产这种产品的总成本为280万元时,求该产品的生产数量。
〔注:总成本=每吨的成本×生产数量〕
【答案】(1)y=﹣x/10+11〔10≤x≤50〕
(2)该产品的生产数量为40吨.
【解析】〔1〕利用图象设y关于x的函数解析式为y=kx+b,
将〔10,10〕〔50,6〕代入解析式得:
解得:
y=﹣x/10+11〔10≤x≤50〕
〔2〕当生产这种产品的总成本为280万元时,
x〔﹣x/10+11〕=280,
解得:x1=40,x2=70〔不合题意舍去〕,
故该产品的生产数量为40吨.
13.(2019辽宁抚顺)如图,抛物线y=﹣x2+bx+c与直线y=mx+n交于B(0,4),C(3,1)两点.直线y=mx+n与x轴交于点A,P为直线AB上方的抛物线上一点,连接PB,PO.
(1)求抛物线的解析式
(2)如图1,连接PC,OC,△OPC和△OPB面积之比为1:2,求点P的坐标;
(3)如图2,PB交抛物线对称轴于M,PO交AB于N,连接MN,PA,当MN∥PA时,直接写出点P的坐标.
【答案】见解析。
【解析】(1)直接将B(0,4),C(3,1)代入y=﹣x2+bx+c,解方程组即可;
(2)待定系数法求BC解析式:y=﹣x+4,OC解析式:y=x,设P(m,﹣m2+2m+4),由△OPC和△OPB面积之比为1:2,可得:2m=2(﹣+m+6),求解即可得点P的坐标;
(3)过点P作PD⊥y轴于点D,交抛物线对称轴于点E,过点N作NF⊥y轴于点F,设点P(m,﹣m2+2m+4),根据相似三角形性质可得方程求解即可.
解:(1)B(0,4),C(3,1)代入y=﹣x2+bx+c,
可得b=2,c=4,
∴y=﹣x2+2x+4;
(2)B(0,4),C(3,1)代入y=mx+n,
可得m=﹣1,n=4, ∴y=﹣x+4,
易求直线OC解析式为:y=x
∵P为直线AB上方的抛物线上一点,
设P(m,﹣m2+2m+4),则0<m<3,过点P作PD⊥y轴于D,作PF⊥x轴于F,交OC于G,过C作CE⊥x轴于E,
∴G(m,m),E(3,0),
∴PD=m,PG=(﹣m2+2m+4)﹣m=﹣m2+m+4,OE=3
S△OBP=OB•PD=2m,
S△OPC=OE•PG=﹣+m+6,
∵△OPC和△OPB面积之比为1:2,
∴2m=2(﹣+m+6),解得:m1=,m2=(舍去);
∴P(,);
(3)∵y=﹣x2+2x+4=﹣(x﹣1)2+5
∴抛物线对称轴为:直线x=1
如图2,过点P作PD⊥y轴于点D,交抛物线对称轴于点E,过点N作NF⊥y轴于点F,
设点P(m,﹣m2+2m+4),则PE=m﹣1,DE=1,DP=m
易得直线OP解析式为:y=x,联立方程组
解得:,∴FN=,
∵MN∥PA ∴=
∵ME∥y轴, ∴=,
∵FN∥x轴, ∴=,
∴=,即:DE•OA=FN•DP,1×4=×m,
解得:(舍去),,
∴P(,).
14.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
【答案】见解析。
【解析】(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,
∴抛物线顶点坐标(1,﹣1).
(2)①∵m=1,
∴抛物线为y=x2﹣2x,
令y=0,得x=0或2,不妨设A(0,0),B(2,0),
∴线段AB上整点的个数为3个.
②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,
∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),
当抛物线经过(﹣1,0)时,m=,
当抛物线经过点(﹣2,0)时,m=,
∴m的取值范围为<m≤.
【点拨】本题考查抛物线与x轴的交点、配方法确定顶点坐标、待定系数法等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.
2021年中考数学专题复习 专题52 中考数学最值问题(教师版含解析): 这是一份2021年中考数学专题复习 专题52 中考数学最值问题(教师版含解析),共40页。教案主要包含了解决几何最值问题的要领,解决代数最值问题的方法要领等内容,欢迎下载使用。
2021年中考数学专题复习 专题55 新冠疫情中的中考数学(教师版含解析): 这是一份2021年中考数学专题复习 专题55 新冠疫情中的中考数学(教师版含解析),共14页。教案主要包含了不等式,选择题,填空题,解答题等内容,欢迎下载使用。
2021年中考数学专题复习 专题47 中考数学转化思想(教师版含解析): 这是一份2021年中考数学专题复习 专题47 中考数学转化思想(教师版含解析),共11页。教案主要包含了对点练习等内容,欢迎下载使用。