终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【精品讲义】人教版 八年级下册寒假同步课程(培优版)4.勾股定理逆定理.学生版

    立即下载
    加入资料篮
    【精品讲义】人教版 八年级下册寒假同步课程(培优版)4.勾股定理逆定理.学生版第1页
    【精品讲义】人教版 八年级下册寒假同步课程(培优版)4.勾股定理逆定理.学生版第2页
    【精品讲义】人教版 八年级下册寒假同步课程(培优版)4.勾股定理逆定理.学生版第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【精品讲义】人教版 八年级下册寒假同步课程(培优版)4.勾股定理逆定理.学生版

    展开

         内容基本要求略高要求较高要求勾股定理及其逆定理已知直角三角形的两边长,会求第三边长会用勾股定理解决简单问题;会用勾股定理及逆定理判定三角形是否为直角三角形  1勾股定理的逆定理: 如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即 模块一 勾股定理的逆定理【例1         ABC中,AB=6,AC=8,BC=10,则该三角形为(  )A、锐角三角形    B、直角三角形     C、钝角三角形      D、等腰直角三角形     【巩固】下列由线段a、b、c组成的三角形,不是直角三角形的是(  )A、a=3,b=4,c=5      B、a=1,b=,c=    C、a=9,b=12,c=15    D、a= ,b=2,c=   【巩固】已知a、b、c是ABC的三边,且a4-b4=a2c2-b2c2,请判断ABC的形状.      【例2         如图,ABC中,CDAB于D,一定能确定ABC为直角三角形的条件的个数是(  )
    ①∠1=A;③∠B+2=90°;BC:AC:AB=3:4:5;AC•BD=AD•CD A、1    B、2     C、3      D、4       【巩固】如图,已知正方形ABED与正方形BCFE,现从A,B,C,D,E,F六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有(  )  A、10   B、12    C、14     D、16       【例3         已知ABC的三边长分别为5,13,12,则ABC的面积为(  )A、30   B、60    C、78     D、不能确定      【巩固】如图所示的一块地,已知AD=4m,CD=3m,ADDC,AB=13m,BC=12m,求这块地的面积.
            【例4         如图,已知CAAB,DBAB,AC=BE,AE=BD.
    (1)试猜想线段CE与DE的大小与位置关系,并说明你的结论;
    (2)若AC=5,BD=12,求CE的长.(提示:连接CD)               【巩固】如图所示,在ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,BPQ的面积为   cm2             【例5         阅读理解题:
    (1)如图所示,在ABC中,AD是BC边上的中线,且AD=BC.求证:BAC=90°.
    证明:BD=CD,AD=BC,AD=BD=DC,
    ∴∠B=BAD,C=CAD,
    ∵∠B+BAD+CAD+C=180°,
    ∴∠BAD+CAD=90°,即BAC=90°.
    (2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.
    (3)直接运用这个结论解答下列题目:一个三角形一边长为2,这边上的中线长为1,另两边之    和为,求这个三角形的面积.            模块二 勾股定理与特殊三角形角的直角三角形【例6         如图,ABC和DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为(  )A、      B、     C、      D、   【巩固】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为(  )A、3      B、6    C、      D、          【例7         如图,ABC中,C=90°,AC=3,B=30°,点P是BC边上的动点,则AP长不可能是(  )A、3.5       B、4.2         C、5.8          D、7       【巩固】ABC中,A:B:C=l:2:3,CDAB于点D.若BC=a,则AD等于A、       B、        C、      D、        【例8         如图所示,已知1=2,AD=BD=4,CEAD,2CE=AC,那么CD的长是(  )       【巩固】如图,在RtABC中,已知,ACB=90°,B=15°,AB边的垂直平分线交AB于E,交BC于D,且BD=13cm,则AC的长是(  )        【例9         已知MAN,AC平分MAN.
    (1)在图1中,若MAN=120°,ABC=ADC=90°,求证:AB+AD=AC;
    (2)在图2中,若MAN=120°,ABC+ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
              角的直角三角形 【例10     解答下列各题:(1)等腰直角ABC和等腰直角CDE的位置如图所示,连接BE,并延长交AD于F,试问AD与BE之间有什么关系?证明你的结论;

    (2)若保持其他条件不变,等腰直角CDE绕C点旋转,位置如下图所示,试问AD与BE之间的关系还存在吗?若存在,给予证明,若不存在,则说明理由.            【例11     如图,以等腰直角三角形ABC的斜边AB与边面内作等边ABD,连接DC,以DC当边作等边DCE,B、E在C、D的同侧,若AB=求BE的长.         【例12     已知:如图所示,ACCD,BDCD.线段AB的垂直平分线EF交AB于点E,交CD于点F,且AC=FD,求证:ABF是等腰直角三角形.         【巩固】如图(1)是某种台灯的示意图,灯柱BC固定垂直于桌面,AB是转轴,可以绕着点B转动,AB=10cm,BC=20cm,圆锥形灯罩的轴截面APQ是等腰直角三角形,PAQ=90°,且PQAB.转动前,点A、B、C在同一直线上.
    (1)转动AB,如图(2)所示,若灯心A到桌面的距离AM=25cm,求ABC的大小;
    (2)继续转动AB,使ABBC,求此时台灯光线照在桌面上的面积?(假设桌面足够大) 1. 如图所示,在四边形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且B=90°,求DAB的度数.       2. 如图,在ABC中,CDAB于D,AC=4,BC=3,DB=(1)求CD,AD的值;
    (2)判断ABC的形状,并说明理由.         3. 如图,在ABC中,已知AB=AC=2a,ABC=15°,CD是腰AB上的高,求CD的长.       4. 如图,ABC中,AB=AC,BAC=120°,ADAC交BC于点D,求证:BC=3AD.      

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map