初中数学华师大版九年级下册26.3 实践与探索公开课第四课时教案
展开第四课时 二次函数与方程、不等式之间的关系(二)
&.教学目标:
1、复习巩固二次函数的图象求的解。
2、让学生体验二次函数和的交点横坐标是方程的解的过程,掌握用函数和图象交点的方法求方程的解。
3、提高学生综合解题能力,渗透数形结合思想。
&.教学重点、难点:
重点:用函数图象法求方程的解以及提高学生综合解题能力。
难点:一元二次方程及二元二次方程组的图象解法。
&.教学过程:
一、知识回顾
1、如何运用函数的图象求方程的解?(精确到)
2、解答下列各题:
(1)画出函数的图象,求方程的解。
(2)画出函数的图象,求方程的解。
教学方法:学生先独立思考,教师根据学生情况加以讲评。
答案:(1),;(2),.
二、探究新知
问题:育才中学初三()班的学生在上节课的作业中出现了争论:求方程的解时,几乎所有学生都是将方程化为,画出函数的图象,观察它与轴的交点,得出方程的解.惟独小刘没有将方程移项,而是分别画出了函数和的图象,如图1,认为它们交点、的横坐标和就是原方程的解。
图 1
图 2
思考:
1、这两种解法的结果一样吗?
2、小刘解法的理由是什么?
解析:这两种近似解法都是可行的,但是小刘的做法比其他同学的做法要简便,因为画抛物线比画直线困难,小刘只要事先画好一条抛物线,再根据待解的方程画出相应的直线即可。
做一做:利用图2,运用小刘的方法求下列方程的解,并检验小刘的方法是否合理。
(1)(精确到); (2).
教学要点:①要把(1)的方程转化为,画函数和的图象;②要把(2)的方程转化为,画函数和的图象。
归纳:一般地,求一元二次方程的近似解时,可先将方程化为,然后分别画出函数和的图象,得出交点,交点的横坐标即为方程的解。
三、讲解例题,巩固新知
§.例1、利用函数的图象,求下列方程的解:
(1) ; (2).
解析:先画一条抛物线的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解。
解:(1)在同一直角坐标系中画出函数和的图象
得到它们的交点(,)、(,),
则方程的解为 ,.
(2)解题(略).
同步练习:利用函数图象,求下列方程的解。
(1) (2)
§.例2、利用函数的图象,求下列方程组的解:
(1); (2).
解析:(1)可以通过直接画出函数和的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.当时,随的增大而增大。
§.例3、已知抛物线和直线相交于点(,).
(1)求这两个函数的解析式;
(2)当取何值时,抛物线与直线相交,并求交点坐标。
解:(1)由点(,)在直线上,则,解得
故直线解析式为,点(,).
又因为点(,)在抛物线的图象上,则
,解得
故抛物线解析式为
(2)根据题意,得:,解得:,
故抛物线与直线的两个交点坐标分别为(,)、(,).
四、巩固练习
补充练习:利用函数图象,求下列方程组的解.
(1) (2)
五、课堂小结
通过本节课的学习,要求同学们
1、进一步掌握利用二次函数的图象求的解。
2、掌握用函数和图象交点的方法求方程的解。
六、课外作业
1、教材 习题26.3
初中数学华师大版九年级下册26.3 实践与探索教案及反思: 这是一份初中数学华师大版九年级下册26.3 实践与探索教案及反思,共3页。教案主要包含了创设情景,导入新课.等内容,欢迎下载使用。
初中数学华师大版九年级下册26.3 实践与探索教学设计: 这是一份初中数学华师大版九年级下册26.3 实践与探索教学设计,共2页。
数学九年级下册26.3 实践与探索教案设计: 这是一份数学九年级下册26.3 实践与探索教案设计,共13页。