年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    七年级数学上学期期末复习检测试卷8

    七年级数学上学期期末复习检测试卷8第1页
    七年级数学上学期期末复习检测试卷8第2页
    七年级数学上学期期末复习检测试卷8第3页
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    七年级数学上学期期末复习检测试卷8

    展开

    这是一份七年级数学上学期期末复习检测试卷8,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(每小题3分,共30分)


    1.(3分)﹣3的相反数是( )


    A.B.C.3D.﹣3


    2.(3分)﹣3πxy2z3的系数和次数是( )


    A.﹣3,6B.﹣3π,5C.﹣3π,6D.﹣3,5


    3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是( )





    A.两点之间,直线最短B.两点确定一条直线


    C.两点之间,线段最短D.两点确定一条线段


    4.(3分)A看B的方向是北偏东21°,那么B看A的方向( )


    A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°


    5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是( )


    A.2B.3C.3.5D.4


    6.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是( )


    A.±1B.1C.0或1D.﹣1


    7.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是( )


    A.3.5×105 km2B.3.5×106 km2


    C.3.5×107 km2D.3.5×108 km2


    8.(3分)有下列四种说法:


    ①锐角的补角一定是钝角;


    ②一个角的补角一定大于这个角;


    ③如果两个角是同一个角的补角,那么它们相等;


    ④锐角和钝角互补.


    其中正确的是( )


    A.①②B.①③C.①②③D.①②③④


    9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是( )


    A.b<﹣a<﹣b<aB.b<﹣b<﹣a<a


    C.b<﹣a<a<﹣bD.﹣a<﹣b<b<a


    10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是( )





    A.1B.5C.4D.3





    二、填空题(每小题3分,共15分)


    11.(3分)绝对值大于1而小于4的整数有 个.


    12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .


    13.(3分)9时45分时,时钟的时针与分针的夹角是 .


    14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为 cm.


    15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了 张电影票.





    三、解答题(共75分)


    16.(8分)计算题


    (1)﹣22×2+(﹣3)3×(﹣)











    (2)×(﹣5)+(﹣)×9﹣×8.











    17.(8分)解方程.


    (1)=1﹣











    (2) [(x﹣2)﹣6]=1











    18.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.











    19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.





    20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.








    21.(12分)用火柴棒按下列方式搭建三角形:





    (1)填表:


    (2)当三角形的个数为n时,火柴棒的根数多少?











    (3)求当n=1000时,火柴棒的根数是多少?











    22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?











    23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.


    (1)某用户每月上网40小时,选哪种方式比较合适?








    (2)某用户每月有100元钱用于上网,选哪种方式比较合算?








    (3)请你设计一个方案,使用户能合理地选择上网方式.

















    参考答案





    一、选择题(每小题3分,共30分)


    1.(3分)﹣3的相反数是( )


    A.B.C.3D.﹣3


    【分析】根据相反数的概念解答即可.


    【解答】解:∵互为相反数相加等于0,


    ∴﹣3的相反数,3.


    故选:C.


    【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.


    2.(3分)﹣3πxy2z3的系数和次数是( )


    A.﹣3,6B.﹣3π,5C.﹣3π,6D.﹣3,5


    【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.所有字母指数的和是次数.


    【解答】解:﹣3πxy2z3的系数是:﹣3π,次数是6.


    故选:C.


    【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.


    3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是( )





    A.两点之间,直线最短B.两点确定一条直线


    C.两点之间,线段最短D.两点确定一条线段


    【分析】此题为数学知识的应用,由题意弯曲的河道改直,肯定为了尽量缩短两地之间的里程,就用到两点间线段最短定理.


    【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.


    故选:C.


    【点评】此题为数学知识的应用,考查知识点两点之间线段最短.


    4.(3分)A看B的方向是北偏东21°,那么B看A的方向( )


    A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°


    【分析】根据A看B的方向是北偏东21°,是以A为标准,反之B看A的方向是以B为标准,从而得出答案.


    【解答】解:A看B的方向是北偏东21°,那么B看A的方向南偏西21°;


    故选:D.


    【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.


    5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是( )


    A.2B.3C.3.5D.4


    【分析】根据相反数和倒数求出a+b=0,xy=1,代入求出即可.


    【解答】解:∵a,b互为相反数,x,y互为倒数,


    ∴a+b=0,xy=1,


    ∴(a+b)+xy=×0+×1==3.5,


    故选:C.


    【点评】本题考查了相反数、倒数和求代数式的值,能求出a+b=0和xy=1是解此题的关键.


    6.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是( )


    A.±1B.1C.0或1D.﹣1


    【分析】根据一元一次方程的定义即可求出答案.


    【解答】解:由题意可知:


    解得:m=﹣1


    故选:D.


    【点评】本题考查一元一次方程的定义,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.


    7.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是( )


    A.3.5×105 km2B.3.5×106 km2


    C.3.5×107 km2D.3.5×108 km2


    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.


    【解答】解:3500000km2用科学记数法表示为3.5×106 km2,


    故选:B.


    【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.


    8.(3分)有下列四种说法:


    ①锐角的补角一定是钝角;


    ②一个角的补角一定大于这个角;


    ③如果两个角是同一个角的补角,那么它们相等;


    ④锐角和钝角互补.


    其中正确的是( )


    A.①②B.①③C.①②③D.①②③④


    【分析】要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.


    【解答】解:①锐角的补角一定是钝角;根据补角的定义和钝角的定义可判断其正确性,故此选项正确;


    ②一个角的补角一定大于这个角;当这个角为钝角时,它的补角小于90°,故此选项错误;


    ③如果两个角是同一个角的补角,那么这两个角相等;利用同补角定义得出,此选项正确;


    ④中没有明确指出是什么角,故此选项错误.


    故正确的有:①③,


    故选:B.


    【点评】此题主要考查了补角以及同位角定义与性质,理解补角的定义中数量关系是解题的关键.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.


    9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是( )


    A.b<﹣a<﹣b<aB.b<﹣b<﹣a<aC.b<﹣a<a<﹣bD.﹣a<﹣b<b<a


    【分析】根据a>0,b<0,且|a|<|b|,可用取特殊值的方法进行比较.


    【解答】解:设a=1,b=﹣2,则﹣a=﹣1,﹣b=2,


    因为﹣2<﹣1<1<2,


    所以b<﹣a<a<﹣b.


    故选:C.


    【点评】此类题目比较简单,由于a,b的范围已知,可用取特殊值的方法进行比较,以简化计算.


    10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是( )





    A.1B.5C.4D.3


    【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.


    【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,


    所以与3相对的数是1,


    由第二个图和第三个图可看出与6相邻的数有1,2,3,4,


    所以与6相对的数是5.


    故选:B.


    【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.





    二、填空题(每小题3分,共15分)


    11.(3分)绝对值大于1而小于4的整数有 4 个.


    【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.


    【解答】解:绝对值大于1且小于3的整数有±2,±3.


    故答案为:4.


    【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.


    12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .


    【分析】把x=2代入方程mx﹣1=2,即可求得m的值.


    【解答】解:把x=2代入方程mx﹣1=2,


    得:2m﹣1=2,


    解得:m=.


    故答案为:.


    【点评】本题考查的是一元一次方程解的概念:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.


    13.(3分)9时45分时,时钟的时针与分针的夹角是 22.5° .


    【分析】9点45分时,分针指向9,时针在指向9与10之间,则时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算0.5°×45即可.


    【解答】解:∵9点45分时,分针指向9,时针在指向9与10之间,


    ∴时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,即0.5°×45=22.5°.


    故答案为22.5°.


    【点评】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.


    14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为 10 cm.


    【分析】由已知条件可知,AC+BD=AD+BC,又因为E,F分别是AB,CD的中点,则EB+CF=0.5(AB+CD)=0.5(AD﹣BC),故EF=BE+CF+BC可求.


    【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,


    ∵E,F分别是AB,CD的中点,


    ∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,


    ∴EF=BE+CF+BC=6+4=10cm.


    【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.


    15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了 20或25 张电影票.


    【分析】本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.


    【解答】解:①1200÷60=20(张);


    ②1200÷(60×0.8)


    1200÷48


    =25(张).


    答:他们共买了20或25张电影票.


    故答案为:20或25.


    【点评】考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..





    三、解答题(共75分)


    16.(8分)计算题


    (1)﹣22×2+(﹣3)3×(﹣)


    (2)×(﹣5)+(﹣)×9﹣×8.


    【分析】(1)根据幂的乘方、有理数的乘法和加法可以解答本题;


    (2)根据乘法分配律可以解答本题.


    【解答】解:(1)﹣22×2+(﹣3)3×(﹣)


    =﹣4×


    =﹣9+8


    =﹣1;


    (2)×(﹣5)+(﹣)×9﹣×8


    =


    =


    =﹣7.


    【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.


    17.(8分)解方程.


    (1)=1﹣


    (2) [(x﹣2)﹣6]=1


    【分析】(1)首先去分母,再去括号移项合并同类项解方程得出答案;


    (2)直接去括号再移项合并同类项解方程得出答案.


    【解答】解:(1)=1﹣


    2(x+3)=12﹣3(3﹣2x),


    则2x+6=12﹣9+6x,


    故﹣4x=﹣3


    解得:x=;





    (2) [(x﹣2)﹣6]=1


    x﹣2﹣8=1,


    则x=11,


    解得:x=55.


    【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.


    18.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.


    【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.


    【解答】解:原式=﹣2x2﹣y2+x2﹣y2﹣3


    =﹣x2﹣y2﹣3,


    当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.


    【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.


    19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.





    【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.


    【解答】解:∵OE平分∠AOB,OF平分∠BOC,


    ∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,


    ∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,


    ∴∠BOC=2∠BOF=30°;


    ∠AOC=∠BOC+∠AOB=30°+90°=120°.


    【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.


    20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.


    【分析】由于C的位置不确定,此题要分情况讨论:


    (1)C地在A、B之间;


    (2)C地在A地上游.


    设A、B间的距离是x千米,则根据共用时间可列方程求解.


    【解答】解:设A、B两地间的距离为x千米,


    (1)当C地在A、B两地之间时,依题意得:


    +=4,


    解得:x=20;


    (2)当C地在A地上游时,依题意得:


    +=4,


    解得:x=.


    答:A、B两地间的距离为20千米或千米.


    【点评】考查了一元一次方程的应用,注意此题由于C点的位置不确定,所以一定要考虑两种情况.还要注意顺水速、静水速、水流速三者之间的关系.


    21.(12分)用火柴棒按下列方式搭建三角形:





    (1)填表:


    (2)当三角形的个数为n时,火柴棒的根数多少?


    (3)求当n=1000时,火柴棒的根数是多少?


    【分析】(1)按照图中火柴的个数填表即可;


    (2)当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出三角形的个数每增加一个,火柴棒的个数增加2根,所以当三角形的个数为n时,三角形个数增加n﹣1个,那么此时火柴棒的个数应该为:3+2(n﹣1);


    (3)当n=1000时,直接代入(2)所求的规律中即可.


    【解答】解:(1)由图可知:


    该表中应填的数依次为:3、5、7、9





    (2)当三角形的个数为1时,火柴棒的根数为3;


    当三角形的个数为2时,火柴棒的根数为5;


    当三角形的个数为3时,火柴棒的根数为7;


    当三角形的个数为4时,火柴棒的根数为9;





    由此可以看出:每当三角形的个数增加1个时,火柴棒的个数相应的增加2,


    所以,当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.





    (3)由(2)得出的规律:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1,


    所以,当n=1000时,2n+1=2×1000+1=2001.


    【点评】考查了规律型:图形的变化类,本题解题关键根据第一问的结果总结规律,得到规律:三角形的个数每增加一个,火柴棒的个数增加2根,然后由此规律解答第三问.


    22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?


    【分析】先设□=m,再把x=2代入方程即可求出m的值.


    【解答】解:设□=m,则由原方程,得


    ﹣=﹣.


    ∵所给方程的解是x=2,


    ∴,


    解得:m=4.


    【点评】本题考查了一元一次方程的解法,解决此题的关键是把方程的解代入原方程再求被污染的内容.


    23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.


    (1)某用户每月上网40小时,选哪种方式比较合适?


    (2)某用户每月有100元钱用于上网,选哪种方式比较合算?


    (3)请你设计一个方案,使用户能合理地选择上网方式.


    【分析】(1)根据上网时间分别计算费用,比较后回答问题;


    (2)根据上网所用费用,分别计算出时间,比较后回答问题;


    (3)设每月上网x小时,收费y元,根据题意得:yA=x+0.1x=1.1x,yB=80+0.1x,分别计算出当yA=yB时,当yA>yB时,当yA<yB时的上网时间,合理地选择上网方式.


    【解答】解:(1)A种上网方式:40×1+0.1×40=44(元),


    B种上网方式:80+40×0.1=84(元),


    答:每月上网40小时,选A种方式比较合适;


    (2)设每月上网x小时,A种上网方式:x+0.1x=100,


    解得:x=(小时),


    B种上网方式:80+0.1x=100,


    解得:x=200(小时);


    答:每月有100元钱用于上网,选B种方式比较合算;


    (3)设每月上网x小时,收费y元,


    根据题意得:yA=x+0.1x=1.1x,


    yB=80+0.1x,


    当yA=yB时,即1.1x=80+0.1x,


    解得:x=80,


    当yA>yB时,即1.1x>80+0.1x,


    解得:x>80,


    当yA<yB时,即1.1x<80+0.1x,


    解得:x<80,


    ∴当每月上网为80小时时,选择两种上网方式都可以;


    当每月上网大于80小时时,选择乙种上网方式合算;


    当每月上网小于80小时时,选择甲种上网方式合算.


    【点评】此题考查一元一次方程的实际运用,理解两种收费方式,正确利用关系式表示,列出方程解决问题.


    三角形个数
    1
    2
    3
    4

    火柴棒根数
    三角形个数
    1
    2
    3
    4

    火柴棒根数

    相关试卷

    七年级数学上学期期末复习检测试卷10:

    这是一份七年级数学上学期期末复习检测试卷10,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    七年级数学上学期期末复习检测试卷9:

    这是一份七年级数学上学期期末复习检测试卷9,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    七年级数学上学期期末复习检测试卷7:

    这是一份七年级数学上学期期末复习检测试卷7,共20页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map