小学数学人教版五年级上册7 数学广角——植树问题教案
展开
这是一份小学数学人教版五年级上册7 数学广角——植树问题教案,共4页。教案主要包含了情境出示,设疑激趣,经历过程,感受方法,探索实践,建立模型,利用新知,解决问题,逆向思考,拓展新知,回顾思考,全课总结等内容,欢迎下载使用。
课题
《在一条线段上植树(两端都栽)》
课时
1
教学 目标
1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。
2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。
教学 重难点
建立并理解“点数=间隔数+1”的数学模型
培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。
教学 准备
师:多媒体。生:预习单
一、情境出示,设疑激趣
教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)
例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?
教师:你能利用所学的知识解决问题吗?
预设1:20棵。(教师追问:你是怎么想的?)每隔5 m栽一棵,共栽100÷5=20(棵)。
预设2:我认为是21棵,因为题目中写着“两端要栽”,所以要再加1棵。
教师:你认为哪一个结果是正确的?(指名回答)
二、经历过程,感受方法
教师:可以用怎样的方法进行检验呢?(画线段图)那我们可以在草稿本上试一试。遇到了什么困难?
预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)
学生:可以先用简单的数试一试。(课件出示)
三、探索实践,建立模型
教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树,在草稿本上画一画。
实物投影或课件出示:
教师:说说你是怎么想的?
预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。
教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?
预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。
还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)
教师:不画图,你能把下面的表格填写完整吗?
教师:不画图,你能把下面的表格填写完整吗?
(根据学生回答,教师在课件上输入数据)你发现了什么规律?
预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。
教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)
教师:回顾这个问题的解答过程,说说你的想法。
四、利用新知,解决问题
教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)
1.在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?
教师:读完这个题目,你觉得有哪些地方需要特别引起注意?
预设1:单位不统一,要先进行转化再计算。
预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)
学生练习,指名回答。
2 km=2000 m (2000÷50+1)×2=82(盏)
答:一共要安装82盏路灯。
教师:2000÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)
2.马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?
教师:仔细读题,认真思考,说说你对这个题目的理解。
引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数-1”。
25-1=24(棵)
答:一共要栽24棵银杏树。
教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?
五、逆向思考,拓展新知
园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?
预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。
教师追问:该怎样解答呢?试一试,并说说你的思路。
(36-1)×6=210(m)
答:从第1棵到最后一棵的距离是210 m。
教师:“36-1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。
六、回顾思考,全课总结
教师:通过这一节的学习,你有什么收获?跟大家交流一下。
根据学生回答,强调:
1.解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。
2.当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。
板书设计
教学反思
相关教案
这是一份小学数学7 数学广角——植树问题教案及反思,共9页。教案主要包含了 创设情境,提出问题, 自主学习,合作探究, 拓展应用 ,巩固提高等内容,欢迎下载使用。
这是一份小学数学人教版五年级上册7 数学广角——植树问题教案及反思,共4页。
这是一份人教版五年级上册7 数学广角——植树问题教案及反思,共4页。教案主要包含了情景导学 揭示课题,自主探究 个体建构,小组讨论 合作提升,互动展示 评研深化,反馈达标 拓展延伸等内容,欢迎下载使用。