所属成套资源:(人教版)数学中考总复习珍藏版(知识讲解+学案+典型例题+试卷)
(人教版)数学中考总复习27中考总复习:特殊三角形(基础)珍藏版
展开
这是一份(人教版)数学中考总复习27中考总复习:特殊三角形(基础)珍藏版,共21页。
中考总复习:特殊三角形—知识讲解(基础) 【考纲要求】【高清课堂:等腰三角形与直角三角形 考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定;2.能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题;3.会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】 【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:
(1)具有三角形的一切性质.
(2)两底角相等(等边对等角)
(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)
(4)等边三角形的各角都相等,且都等于60°.
3.判定:
(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);
(2)三个角都相等的三角形是等边三角形;
(3)有一个角为60°的等腰三角形是等边三角形.
要点诠释:
(1)腰、底、顶角、底角是等腰三角形特有的概念;
(2)等边三角形是特殊的等腰三角形.
考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2性质:
(1)直角三角形中两锐角互余.
(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.
(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.
(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.
(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.3.判定:
(1)有两内角互余的三角形是直角三角形.
(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.
(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.如图,等腰三角形一腰上的高与底边所成的角等于( )
A.顶角的2倍 B.顶角的一半 C.顶角 D.底角的一半
【思路点拨】等角的余角相等.【答案】B.【解析】如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C=90°-(180-∠A)= ∠A,【总结升华】本题适用于任何一种等腰三角形,可以试着证明在钝角三角形中结论一样成立;总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.举一反三: 【变式】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有( )A.5个 B.4个 C.3个 D.2个【答案】A.2.如图,已知AB=AC,BD、CE分别是∠B、∠C的平分线,AM⊥BD于点M,AN⊥CE于点N,求证:ΔAMN是等腰三角形.【思路点拨】证明等腰三角形两个思路,一是证明有两个等角,二是证明有两个等边,结合条件考虑选择哪种方式.【答案与解析】∵AB=AC.∴∠ABC=∠ACB;又BD和CE均为角平分线.∴∠ABD=∠ACE;又AB=AC,∠BAD=∠CAE.∴△BAD≌△CAE(ASA),AE=AD;∠AEC=∠ADB.又∠ANE=∠AMD=90°.∴△ANE≌△AMD(AAS)即AN=AM.【总结升华】证明等腰三角形可以证明两边相等,也可以证明两底角相等. 类型二、直角三角形3.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( ) A. B. C. D.
【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,
所以在Rt△DCE中,DE=2CD=4.故选C. 【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】 如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ). A. B. C. D.5
【答案】B.
解析:由折叠可知,AD=BD,DE⊥AB, ∴BE=AB
设BD为x,则CD=8-x
∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2
∴AB2=42+82=80,∴AB=,∴BE=
在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5
在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=, 故选B.4.已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.
(1)若∠BAC=30°,求证: AD=BD;
(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.
图1 图2【思路点拨】(1)利用直角三角形两锐角互余,求得∠ABD=∠A=30°,得出AD=BD.
(2)利用三角形内角和及角平分线定义或利用三角形外角性质.【答案与解析】 (1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°
又∵ BD平分∠ABC, ∴∠ABD=30°,∴ ∠BAC =∠ABD,∴BD=AD;
(2)解法一: ∵∠C=90°,∴∠BAC+∠ABC=90°
∴=45°
∵ BD平分∠ABC,AP平分∠BAC
∠BAP=,∠ABP=
即∠BAP+∠ABP=45°
∴∠APB=180°-45°=135°
解法二: ∵∠C=90°,∴∠BAC+∠ABC=90°
∴=45°
∵BD平分∠ABC,AP平分∠BAC
∠DBC=,∠PAC=
∴∠DBC+∠PAD=45°
∴∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°. 【总结升华】本题利用了:1、直角三角形的性质,两锐角互余,2、角的平分线的性质,3、三角形的外角与内角的关系.类型三、综合运用5 . 已知ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5. (1)k为何值时,ΔABC是以BC为斜边的直角三角形? (2)k为何值时,ΔABC是等腰三角形?并求出ΔABC的周长。【思路点拨】△ABC的两边的长是关于x的一元二次方程的两个实数根,应该想到一元二次方程中根与系数的关系.【答案与解析】(1)∵AB、ACAB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根, ∴AB+AC=2k+3,AB×AC= k2+3k+2 又∵ΔABC是以BC为斜边的直角三角形,BC=5 ∴ ∴ 即 ∴ 当k=-5时,方程为 解得(不合题意,舍去) 当k=2时,方程为 解得 ∴当k=2时,ΔABC是以BC为斜边的直角三角形.(2)当ΔABC是等腰三角形时,则有①AB=AC,②AB=BC,③AB=BC三种情况:∵△==1>0∴AB≠AC,故第一种情况不成立;当AB=BC或AC=BC时,5是方程x2-(2k+3)x+k2+3k+2=0的根∴当k=3时,,∴∴等腰三角形的边长分别是5,5,4.周长为14;当k=4时,,∴所以等腰三角形的边长是5,5,6,周长是16.【总结升华】当三角形是等腰三角形并且未明确哪两边为腰时,要注意分类讨论.【变式】已知等腰三角形三边的长为a、b、c且a=c,若关于x的一元二次方程ax2-bx+c=0的两根之差为,则等腰三角形的一个底角是( ). A. 150 B. 300 C. 450 D. 600【答案】B.6.已知,如图,∠1=12°,∠2=36°,∠3=48°,∠4=24°. 求的度数.【思路点拨】直接求很难,那就想想能不能通过翻折或旋转构造一个与全等的三角形,从而使其换个位置,看看会不会容易求.【答案与解析】将沿AB翻折,得到,连结CE, 则,∴∠1=∠5=12°.∴60°∵48°∴.又∵∠2=36°,72°,∴∴BE=BC∴为等边三角形. ∴又垂直平分BC.∴AE平分.∴30°∴∠ADB=30°【总结升华】不规则图形题求解时,运用翻折,平移,旋转是主要的思路.【高清课堂:等腰三角形与直角三角形 例6】【变式】如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④ AB-BC=2MC;其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 【答案】D.
相关试卷
这是一份(人教版)数学中考总复习45中考总复习:图形的变换(基础)珍藏版,文件包含中考总复习图形的变化--巩固练习基础doc、中考总复习图形的变换--知识讲解基础doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份(人教版)数学中考总复习43总复习:圆综合复习(基础)珍藏版,文件包含中考总复习圆综合复习--巩固练习基础doc、中考总复习圆综合复习--知识讲解基础doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份(人教版)数学中考总复习37中考总复习:图形的相似(基础)珍藏版,共21页。