高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直优秀ppt课件
展开8.6 空间直线、平面的垂直
8.6.2 直线与平面垂直
第2课时 直线与平面垂直的性质
直线与平面垂直的性质定理
1.直线与平面的距离一条直线与一个平面平行时,这条直线上___________到这个平面的距离,叫做这条直线到这个平面的距离.2.两个平行平面间的距离如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都_______,我们把它叫做这两个平行平面间的距离.
[知识解读] 1.剖析直线与平面垂直的性质定理(1)该定理考查的是在直线与平面垂直的条件下,可得出什么结论.(2)定理给出了判定两条直线平行的另一种方法(只要判定这两条直线都与同一个平面垂直).(3)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系相互转化的依据.(4)定理的推证过程采用了反证法.
其中正确命题的序号是( )A.②③ B.③④C.①② D.①②③④[答案] A[解析] ①中n,α可能平行或n在平面α内;②③正确;④两直线m,n平行或异面,故选A.
[归纳提升] 判定两条直线平行的常用方法(1)利用线线平行定义:证共面且无公共点.(2)利用基本事实4:证两线同时平行于第三条直线.(3)利用线面平行的性质定理:把证线线平行转化为证线面平行.(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直.(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.
【对点练习】❶ 已知l,m,n是三条不同的直线,α是一平面.下列命题中正确的个数为( )①若l∥m,m∥n,l⊥α,则n⊥α;②若l∥m,m⊥α,n⊥α,则l∥n;③若l∥α,l⊥m,则m⊥α.A.1 B.2 C.3 D.0
[解析] 对于①,因为l∥m,m∥n,所以l∥n,又l⊥α,所以n⊥α,即①正确;对于②,因为m⊥α,n⊥α,所以m∥n,又l∥m,所以l∥n,即②正确;对于③,因为l∥α,l⊥m,所以m∥α或m⊂α或m⊥α或m与α斜交,即③错误.
如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:MN∥AD1.[证明] 因为四边形ADD1A1为正方形,所以AD1⊥A1D.又因为CD⊥平面ADD1A1,所以CD⊥AD1.因为A1D∩CD=D,所以AD1⊥平面A1DC.又因为MN⊥平面A1DC,所以MN∥AD1.
[归纳提升] (1)若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直.(2)在证明时注意利用正方形、平行四边形及三角形中位线的有关性质.
【对点练习】❷ 如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB.求证:a∥l.[证明] 因为EA⊥α,α∩β=l,即l⊂α,所以l⊥EA.同理l⊥EB.又EA∩EB=E,所以l⊥平面EAB.因为EB⊥β,a⊂β,所以EB⊥a,又a⊥AB,EB∩AB=B,所以a⊥平面EAB.由线面垂直的性质定理,得a∥l.
如图所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB.
[证明] 因为SA⊥平面ABCD,所以SA⊥BC.因为四边形ABCD是正方形,所以AB⊥BC.因为SA∩AB=A,所以BC⊥平面SAB.因为AE⊂平面SAB,所以BC⊥AE.因为SC⊥平面AGEF,所以SC⊥AE.又因为BC∩SC=C,所以AE⊥平面SBC.而SB⊂平面SBC,所以AE⊥SB.
[归纳提升] 线线、线面垂直问题的解题策略(1)证明线线垂直,一般通过证明一条直线垂直于经过另一条直线的平面,为此分析题设,观察图形找到是哪条直线垂直于经过哪条直线的平面.(2)证明直线和平面垂直,就是要证明这条直线垂直于平面内的两条相交直线,这一点在解题时一定要体现出来.
【对点练习】❸ 本例中“过A且垂直于SC的平面分别交SB,SC,SD于点E,F,G”改为“过A作AF⊥SC于点F,过点F作EF⊥SC交SB于点E”,结论不变,如何证明?
[证明] 因为SA⊥平面ABCD,所以SA⊥BC.因为四边形ABCD是正方形,所以AB⊥BC.因为SA∩AB=A,所以BC⊥平面SAB.因为AE⊂平面SAB,所以BC⊥AE.又因为AF⊥SC于点F,EF⊥SC交SB于点E,所以SC⊥平面AGEF,所以SC⊥AE.又因为BC∩SC=C,所以AE⊥平面SBC.而SB⊂平面SBC,所以AE⊥SB.
[正解] ①当点A,B在平面α的同侧时,由题意知直线AB与平面α所成的角为30°.②当点A,B位于平面α的两侧时,如图,过点A,B分别向平面α作垂线,垂足分别为A1,B1,设AB与平面α相交于点C,A1B1为AB在平面α上的射影,∴∠BCB1或∠ACA1为AB与平面α所成的角.在Rt△BCB1中,BB1=2.在Rt△ACA1中,AA1=1.
【对点练习】❹ 在Rt△ABC中,D是斜边AB的中点,AC=6,BC=8,EC⊥平面ABC,且EC=12,则ED=_____.
人教A版 (2019)8.6 空间直线、平面的垂直课堂教学ppt课件: 这是一份人教A版 (2019)8.6 空间直线、平面的垂直课堂教学ppt课件,共19页。PPT课件主要包含了导入新课,精彩课堂,图2中a∥b,课堂练习,课堂总结等内容,欢迎下载使用。
人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直示范课课件ppt: 这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直示范课课件ppt,共27页。PPT课件主要包含了图形语言,理解意义,符号语言,面面的距离,典型例题分析,小结及随堂练习等内容,欢迎下载使用。
人教A版 (2019)必修 第二册第八章 立体几何初步8.6 空间直线、平面的垂直集体备课ppt课件: 这是一份人教A版 (2019)必修 第二册第八章 立体几何初步8.6 空间直线、平面的垂直集体备课ppt课件,共25页。PPT课件主要包含了性质1,性质2,知识点等内容,欢迎下载使用。