- 2.4.3 动生电磁感应 教案 教案 4 次下载
- 4.1.1 温度 教案 教案 5 次下载
- 3.1.4 光在球面上的反射与折射 教案 教案 5 次下载
- 3.1.1 几何光学基础 教案 教案 5 次下载
- 2.3.4 磁场对运动电荷的作用 教案 教案 4 次下载
3.2.2 光的量子性
展开§2.2、 光的量子性
2.2.1、光电效应
某些物质在光(包括不可见光)的照射下有电子发射出来,这就是光电效应的现象。利用容易产生光电效应的物质制成阴极的电子管称为光电管。
图2-2-1所示的电来研究光电效应的规律。实验发现了光电效应的如下规律:
光电效应过程非常快,从光照到产生光电子不超过,停止光照,光电效应也立即停止。
各种材料都有一个产生光电效应的极限频率。入射光的效率必须高于才能产生光电效应;频率低于的入射光,无论其强度多大,照射时间多长,都不能产生光电效应。不同的物质,一般极限频率都不同。
逸出的光电子的最大初动能可以这样测定,将滑动变阻器的滑片逐渐向左移动,直到光电流截止,读出这时伏特表的读数即为截止电压U。根据动能定理,光电子克服反向电压作的功等于动能的减小,即
实验结果表明,当入射光频率一定时,无论怎样改变入射光的强度,截止电压都不会改变;入射光频率增大,截止电压也随着呈线性增大。这说明,逸出的光电子的
最大初动能只能随入射光频率增大而增大,与入射光强度无关。最大初动能与入射光频率的关系如图2-2-1所示。
在入射光频率一定条件下,向右移动变阻器的滑动片,光电流的强度随着逐渐增大,但当正向电压增大到某一值后继续再增大时,光电流维持一个固定图2-3值不变,此时光电流达到饱和。增大入射光的强度P,饱和光电流也随着成正比地增大。如图2-2-1所示。
2.2.2、光子说
光电效应的四个特点中,只有第四个特点够用电磁来解释,其他特点都与电磁场理论推出的结果相矛盾。爱因斯坦于1905年提出的光子说,完美地解释了这一现象。
光子说指出:空间传播的光(以及其他电磁波)都是不连续的,是一份一份的,每一份叫做一个光子。光子的能量跟它的频率成正比即
E=hv
式中h为普朗克恒量。光子也是物质,它具有质量,其质量等于
光子也具有动量,其动量等于
根据能量守恒定律得出:
上式称为爱因斯坦光电效应方程。式中W称为材料的逸出功,表示电子从物而中逸出所需要的最小能量。某种物质产生光电效应的极限频率就由逸出功决定:
不同物质电子的逸出功不同,所对应的极限频率也不同。
在图2-3中,图线与v轴的交点为极限频率,将图线反身延长与轴的交点对应的数值的绝对值就是W。图线的斜率表示普朗克恒量的数值,因此,图示电路还可以用来测定普朗克恒量。
2.2.3、康普顿效应
当用可见光或紫外线作为光电效应的光源时,入射的光子将全部被电子吸收。但如果用X射线照射物质,由于它的频率高,能量大,不会被电子全部吸收,只需交出部分能量,就可以打出光电子,光子本身频率降低,波长变长。这种光电效应现象称为康普顿效应。
当X射线光子与静止的电子发生碰撞时,可以用p表示入射光子的动量,代表散射光子的动量,代表光电子的动量。则依据动量守恒定律,可以用图2-2-4表示三者的矢量关系。由于,所以
由能量守恒定律得出:
式中表示电们的静止质量,
m表示运动电子的质量,有图2-4
联立上述各式,并将代入整理得
2.2.4、光压
光压就是光子流产生的压强,从光子观点看,光压产生是由于光子把它的动量传给物体的结果
为入射光强,为壁反射系数。
2.2.5、波粒二象性
由理论和实验所得结果证明,描述粒子特征的物理量(E,p)与描述波动特征的物理量(v,λ)之间存在如下关系。
事实上,这种二象性是一切物质(包括实物和场)所共有的特征。
例1、图5-1中纵坐标为光电效应实验中所加电压(U),横坐标为光子的频率(v)。若某金属的极限频率为,普朗克恒量为h,电子电量为e,试在图中画出能产生光电流的区域(用斜线表示)。
分析:在U-v图第一象限中能产生光电流的区域,可根据极限频率很容易地作出。关键在于如何确定第四象限中能产生光电流的区域,但我们可以利用爱因斯坦的光电方程找出这一区域。
解:爱因斯坦的光电方程. ①
根据极限频率可知 ②
由于光电子具有最大初动能为,则它可克服反向电压作功为Ue,故有图5-1
③
将②、③式代入①式可得
此即为图2-2-5中BC斜率的绝对值。据此可作出图2-2-6,图中画有斜线区域即为能产生光电流的区域。
例2、一光电管阴极对于波长的入射光,发射光电子的遏止电压为0.71V,当入射光的波长为多少时,其遏止电压变为1.43V?(电子电量,普朗克常量)。
分析:根据爱因斯坦的光电方程,可知,当加在光电管上的反向电压达到一定值时可有Ue=hv-W,此时光电管无光电流产生,这个电压U即为遏止电压。知道了遏止电压U即可由光电方程求出逸出功W。对于一个光电管,它的阴极逸出功W是不变的,因而也可利用W求出对应不同遏止电压的入射光的频率(或波长)。
解:光电方程为,式中U为遏止电压,W为阴极材料的逸出功,v为入射光的频率。设所求入射光的波长为,将和两次代入光电方程,消去逸出功W,得
代入数据得
例3、一波长为的光子与一运动的自由电子碰撞。碰撞的结果使电子变为静止,并且波长为的光子在与原先方向的夹角为的方向上前进。此光子员另一静止的自由电子碰撞,然后以波长的光子前进,其方向在碰撞后改变了。计算第一个电子在碰撞前的德布罗意波长。(普朗克常数,电子质量,光速)
分析:此题需运用能量守恒与动量守恒求解,但必须应用相对论作必要的变换。
解:对第一次碰撞,能量守恒定律为
①
式中v是光子的频率,是电子的能量。在波长为的光子的出射方向,以及在与它垂直方向上写出动量守恒定律(见图2-2-7)分别为
式是电子的动量。
从上述两方程消去,并把λ写成c/v,有
②
利用相对论关系
③
以及方程①和②得
④
变换后得
⑤
对第二次碰撞可作同样的计算,得如下结果
⑥
⑤⑥两式相减,得
两次碰撞是类似的,利用⑤式得。
分别利用①和③式,可算出电子的能量和动量为
第一个电子的波长为。
例4、一台二氧化碳气体激光器发出的激光功率为P=1000W,射出的光束截面积为A=1.00mm2。试问:
(1)当该光束垂直入射到一物体平面上时,可能产生的光压的最大值为多少?
(2)这束光垂直射到温度T为273K,厚度d为2.00cm的铁板上,如果有80%的光束能量被激光所照射到的那一部分铁板所吸收,并使其熔化成与光束等截面积的直圆柱孔,这需要多少时间?
已知,对于波长为λ的光束,其每一个光子的动量为k=h/λ,式中h为普朗克恒量,铁的有关参数为:热容量,密度,熔点,熔解热,摩尔质量。
分析:光压即光对被照射物产生的压强,而求压强的关键在求出压力。利用动量定理,可由光子的动量变化求出它对被照射物的压力。
解:(1)当光束垂直入射到一个平面上时,如果光束被完全反射,且反射光垂直于平面,则光子的动量改变达最大值
①
此时该光束对被照射面的光压为最大。设单位时间内射到平面上的光子数为n,光压p的数值就等于这些光子对被照射面积A的冲量(也就是光子动量的改变量)的总和除以面积A,即
②
每个光子的能量为,这里c为真空中的光速,v为光的频率,因而
于是,由②式
(2)激光所照射到的质量为M那一小部分铁板在熔化过程中所吸收的热量为
所以
高中物理人教版 (2019)必修 第三册5 能量量子化教案: 这是一份高中物理人教版 (2019)必修 第三册5 能量量子化教案,共5页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。
高中人教版 (2019)第四章 原子结构和波粒二象性5 粒子的波动性和量子力学的建立教案设计: 这是一份高中人教版 (2019)第四章 原子结构和波粒二象性5 粒子的波动性和量子力学的建立教案设计,共3页。
鲁科版 (2019)必修 第三册第4节 初识光量子与量子世界优质课教学设计: 这是一份鲁科版 (2019)必修 第三册第4节 初识光量子与量子世界优质课教学设计,共4页。教案主要包含了教学目标,教学重难点,教学过程,课堂总结等内容,欢迎下载使用。