所属成套资源:2018版高考数学(人教a版理科)一轮复习真题演练集训(含答案)
2018版高考数学(人教a版理科)一轮复习真题演练集训:第八章 立体几何 8-4 word版含答案
展开
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第八章 立体几何 8-4 word版含答案,共5页。
www.ks5u.com 真题演练集训 1.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.已知G,H分别为EC,FB的中点,求证:GH∥平面ABC.证明:设FC的中点为I,连接GI,HI,在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,OB∩BC=B,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.2.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.证明:MN∥平面PAB.证明:由已知得AM=AD=2.取BP的中点T,连接AT,TN. 由N为PC的中点知,TN∥BC,TN=BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.3.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:DE∥平面AA1C1C.证明:由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.4.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.证明:PB∥平面AEC.证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC. 课外拓展阅读 立体几何中的探索性问题1.条件追溯型问题 如图所示,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.(1)求证:DB⊥平面B1BCC1;(2)设E是DC上一点,试确定点E的位置,使得D1E∥平面A1BD,并说明理由.(1) 因为AB∥DC,AD⊥DC,所以AB⊥AD,在Rt△ABD中,AB=AD=1,所以BD=,易求BC=,因为CD=2,所以BD⊥BC.又BD⊥BB1,B1B∩BC=B,所以BD⊥平面B1BCC1.(2) 点E为DC的中点.理由如下:如图所示,连接BE,因为DE∥AB,DE=AB,所以四边形ABED是平行四边形.所以AD∥BE.又AD∥A1D1,所以BE∥A1D1,所以四边形A1D1EB是平行四边形,所以D1E∥A1B.因为D1E⊄平面A1BD,A1B⊂平面A1BD,所以D1E∥平面A1BD.方法探究立体几何中的条件追溯型问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目的其他已知条件,逆推(即从后往前推),一步一步地推出所要求的条件.此类问题的难点是如何应用“执果索因”.在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.2.存在探索型问题 如图所示,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?请说明理由. (1)利用DE∥PC证明线面平行;(2)利用平行关系和已知PC⊥AB证明DE⊥DG;(3)Q应为EG的中点.(1) 因为D,E分别是AP,AC的中点,所以DE∥PC.又DE⊄平面BCP,所以DE∥平面BCP.(2) 因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.(3) 存在满足条件的点Q.理由如下:连接DF,EG,如图所示,设Q为EG的中点,由(2)知,DF∩EG=Q,且QD=QE=QF=QG=EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=EG,所以Q为满足条件的点.方法探究解决与平行有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.
相关试卷
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第六章 数列 6-1 word版含答案,共7页。
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第八章 立体几何 8-7 word版含答案,共14页。
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第八章 立体几何 8-6 word版含答案,共1页。