搜索
    上传资料 赚现金
    英语朗读宝

    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案

    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案第1页
    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案第2页
    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案第3页
    还剩4页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案

    展开

    这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案,共7页。
     www.ks5u.com 真题演练集训 1.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.答案:解析:由题意知,试验成功的概率pXB,所以E(X)=2×.2.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μσ2),其中μ近似为样本平均数σ2近似为样本方差s2.利用该正态分布,求P(187.8<Z<212.2);某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用的结果,求E(X).附:≈12.2.ZN(μσ2),则P(μσ<Z<μσ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)由(1)知,ZN(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知XB(100,0.682 6),所以E(X)=100×0.682 6=68.26.3.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234≥5概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.20+0.20+0.10 +0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.10 +0.05=0.15. P(AB) =P(B),P(B|A)=.因此所求概率为.(3)记续保人本年度的保费为X,则X的分布列为X0.85a a1.25a 1.5a 1.75a 2a P0.300.150.200.200.100.05E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23. 课外拓展阅读 离散型随机变量的期望问题离散型随机变量的期望常与茎叶图、频率分布直方图、分层抽样、函数、不等式等知识相结合,这就为设计新颖、内在联系密切、思维方法灵活的考题开辟了广阔的空间.近年高考中有关离散型随机变量的期望的题目多以解答题形式呈现,一题多问,这样既降低了起点,又分散了难点,能较全面地考查必然与或然思想、处理交汇性问题的能力和运算求解能力,难度多为中等,分值在12分左右.现一起走进离散型随机变量的期望,欣赏其常见的交汇方式与解题方法.一、离散型随机变量的期望与茎叶图的交汇问题 为备战2017年青年跳水世锦赛,我国跳水健儿积极训练,在最近举行的一次选拔赛中,甲、乙两名运动员为争夺一个参赛名额进行了七轮激烈的比赛,甲、乙两名选手七轮比赛的得分如图所示,已知甲的平均得分比乙的平均得分少1.(1)求甲得分的众数与乙得分的极差;(2)若从甲、乙两名运动员不低于80且不高于90的得分中各任选1个,记甲、乙两名运动员得分之差的绝对值为ξ,求ξ的分布列及其期望. (1)观察茎叶图中甲的数据,判断出现次数最多的数据,即众数;观察茎叶图中乙的数据,找出最高分与最低分,相减可得乙得分的极差;(2)先求ξ的所有可能取值,然后利用古典概型的概率计算公式,求出ξ取各个值时的概率,列出其分布列,最后利用期望的定义求出期望值. (1)由茎叶图可知,甲、乙两名运动员七轮比赛的得分情况如下:甲:78,80+m,84,85,84,85,91;乙:79,84,84,86,87,84,91.则乙的平均得分为×(79+84+84+86+87+84+91)=85,所以甲的平均得分为=85-1=84,×=84,解得m=1.所以甲得分的众数为84,85,乙得分的极差为91-79=12.(2)设甲、乙两名运动员的得分分别为xyξ=|xy|.由茎叶图可知,ξ的所有可能取值为0,1,2,3,5,6.ξ=0时,xy=84,P(ξ=0)=ξ=1时,x=85,y=84或86,P(ξ=1)=ξ=2时,x=84,y=86或x=85,y=87,P(ξ=2)=ξ=3时,x=81,y=84或x=84,y=87,P(ξ=3)=ξ=5时,x=81,y=86,P(ξ=5)=ξ=6时,x=81,y=87,P(ξ=6)=.所以ξ的分布列为ξ012356Pξ的期望为E(ξ)=0×+1×+2×+3×+5×+6×.突破攻略本题以实际生活为背景,并融入排列、组合、古典概型的概率、随机变量的分布列与期望等知识进行探求,有很强的现实意义与时代气息.破解离散型随机变量的期望与茎叶图的交汇题的关键:一是看图说话,即看懂茎叶图,并能适时提取相关的数据;二是会求概率,即利用排列、组合知识,以及古典概型的概率公式求随机变量的概率;三是活用定义,利用随机变量的数学期望的定义进行计算.二、离散型随机变量的期望与函数的交汇问题 某次假期即将到来,喜爱旅游的小陈准备去厦门游玩,初步打算去鼓浪屿、南普陀寺、白城浴场三个景点,每个景点有可能去的概率都是,且是否游览某个景点互不影响,设ξ表示小陈离开厦门时游览的景点数.(1)求ξ的分布列、期望及其方差;(2)记“函数f(x)=x2-3ξx+1在区间 (1)依题设条件可判断ξ服从二项分布,利用二项分布公式即可求出其分布列、期望及方差;(2)先求出二次函数f(x)的图象的对称轴方程,利用f(x)单调性,可求出ξ的取值范围,即可求出事件A的概率. (1)依题意,得ξ的所有可能取值分别为0,1,2,3.因为ξB所以P(ξ=0)=C×3P(ξ=1)=C×1×2P(ξ=2)=C×2×1P(ξ=3)=C×3.所以ξ的分布列为ξ0123P所以ξ的期望为E(ξ)=3×=1,ξ的方差为D(ξ)=3××.(2)因为f(x)=2+1-ξ2的图象的对称轴方程为xξ又函数f(x)=x2-3ξx+1在 某学院为了调查本校学生“阅读相伴”(“阅读相伴”是指课外阅读超过1个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内“阅读相伴”的天数,并将所得的数据分成以下六组:,(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求这40名学生中“阅读相伴”天数超过20的人数;(2)现从这40名学生中任取2名,设Y为取出的2名学生中“阅读相伴”天数超过20的人数,求Y的分布列及数学期望E(Y). (1)观察频率分布直方图,求出“阅读相伴”天数超过20的频率,即可求出其频数;(2)依题设条件可判断Y服从超几何分布,因此可利用超几何分布的概率公式求出Y取各个值时的概率,列出分布列,最后求出E(Y)的值. (1)由题图可知,“阅读相伴”天数未超过20的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以“阅读相伴”天数超过20的学生人数是40×(1-0.75)=40×0.25=10.(2)随机变量Y的所有可能取值为0,1,2.所以P(Y=0)=P(Y=1)=P(Y=2)=.所以Y的分布列为Y012P所以Y的数学期望E(Y)=0×+1×+2×.突破攻略本题将传统的频率分布直方图背景赋予新生的数学期望,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,对于这些实际问题中的随机变量X,如果能够断定它服从超几何分布H(NMn),则随机变量X的概率可利用概率公式P(Xm)=(m=0,1,…,n,)求得,期望可直接利用公式E(X)=求得.

    相关试卷

    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-8 word版含答案:

    这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-8 word版含答案,共3页。

    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-7 word版含答案:

    这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-7 word版含答案,共4页。

    2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-6 word版含答案:

    这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-6 word版含答案,共3页。试卷主要包含了某公司的班车在7等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map