- 2020年四川省南充市中考试卷 试卷 7 次下载
- 2020年深圳市中考数学试卷 试卷 8 次下载
- 2020年四川省自贡市中考试卷 试卷 6 次下载
- 2020年四川省遂宁市中考数学试卷 试卷 6 次下载
- 2020年四川省内江市中考数学试题 试卷 5 次下载
2020年浙江省温州市中考数学试卷
展开2020年浙江省温州市中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.(4分)数1,0,,中最大的是
A.1 B.0 C. D.
2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为
A. B. C. D.
3.(4分)某物体如图所示,它的主视图是
A. B. C. D.
4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为
A. B. C. D.
5.(4分)如图,在中,,,点在边上,以,为边作,则的度数为
A. B. C. D.
6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:
株数(株
7
9
12
2
花径
6.5
6.6
6.7
6.8
这批“金心大红”花径的众数为
A. B. C. D.
7.(4分)如图,菱形的顶点,,在上,过点作的切线交的延长线于点.若的半径为1,则的长为
A.1 B.2 C. D.
8.(4分)如图,在离铁塔150米的处,用测倾仪测得塔顶的仰角为,测倾仪高为1.5米,则铁塔的高为
A.米 B.米
C.米 D.米
9.(4分)已知,,是抛物线上的点,则
A. B. C. D.
10.(4分)如图,在中,,以其三边为边向外作正方形,过点作于点,再过点作分别交边,于点,.若,,则的长为
A.14 B.15 C. D.
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)分解因式: .
12.(5分)不等式组的解为 .
13.(5分)若扇形的圆心角为,半径为3,则该扇形的弧长为 .
14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在及以上的生猪有 头.
15.(5分)点,,在反比例函数(常数,图象上的位置如图所示,分别过这三个点作轴、轴的平行线.图中所构成的阴影部分面积从左到右依次为,,.若,,则的
值为 .
16.(5分)如图,在河对岸有一矩形场地,为了估测场地大小,在笔直的河岸上依次取点,,,使,,点,,在同一直线上.在点观测点后,沿方向走到点,观测点发现.测得米,米,米,,则场地的边为 米,为 米.
三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(10分)(1)计算:.
(2)化简:.
18.(8分)如图,在和中,,,点,,依次在同一直线上,且.
(1)求证:.
(2)连结,当,时,求的长.
19.(8分),两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.
(1)要评价这两家酒店月的月盈利的平均水平,你选择什么统计量?求出这个统计量.
(2)已知,两家酒店月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.
20.(8分)如图,在的方格纸中,请按要求画格点线段(端点在格点上),且线段的端点均不与点,,,重合.
(1)在图1中画格点线段,各一条,使点,,,分别落在边,,,上,且,不平行.
(2)在图2中画格点线段,各一条,使点,,,分别落在边,,,上,且.
21.(10分)已知抛物线经过点,.
(1)求,的值.
(2)若,是抛物线上不同的两点,且,求的值.
22.(10分)如图,,为上两点,且在直径两侧,连结交于点,是上一点,.
(1)求证:.
(2)点关于的对称点为,连结.当点落在直径上时,,,求的半径.
23.(12分)某经销商3月份用18000元购进一批恤衫售完后,4月份用39000元购进一批相同的恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批恤衫多少件?
(2)4月份,经销商将这批恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出件以后,剩余的按标价八折全部售出;乙店同样按标价卖出件,然后将件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含的代数式表示.
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
24.(14分)如图,在四边形中,,,分别平分,,并交线段,于点,(点,不重合).在线段上取点,(点在之间),使.当点从点匀速运动到点时,点恰好从点匀速运动到点.记,,已知,当为中点时,.
(1)判断与的位置关系,并说明理由.
(2)求,的长.
(3)若.
①当时,通过计算比较与的大小关系.
②连结,当所在直线经过四边形的一个顶点时,求所有满足条件的的值.
2020年浙江省温州市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.(4分)数1,0,,中最大的是
A.1 B.0 C. D.
【分析】根据有理数大小比较的方法即可得出答案.
【解答】解:,
所以最大的是1.
故选:.
【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.
2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为
A. B. C. D.
【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.
【解答】解:,
故选:.
【点评】此题考查科学记数法的表示方法,表示时关键要正确确定的值以及的值.
3.(4分)某物体如图所示,它的主视图是
A. B. C. D.
【分析】根据主视图的意义和画法进行判断即可.
【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项所表示的图形符合题意,
故选:.
【点评】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.
4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为
A. B. C. D.
【分析】根据概率公式求解.
【解答】解:从布袋里任意摸出1个球,是红球的概率.
故选:.
【点评】本题考查了概率公式:随机事件的概率(A)事件可能出现的结果数除以所有可能出现的结果数.
5.(4分)如图,在中,,,点在边上,以,为边作,则的度数为
A. B. C. D.
【分析】根据等腰三角形的性质可求,再根据平行四边形的性质可求.
【解答】解:在中,,,
,
四边形是平行四边形,
.
故选:.
【点评】考查了平行四边形的性质,等腰三角形的性质,关键是求出的度数.
6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:
株数(株
7
9
12
2
花径
6.5
6.6
6.7
6.8
这批“金心大红”花径的众数为
A. B. C. D.
【分析】根据表格中的数据,可以得到这组数据的中位数,本题得以解决.
【解答】解:由表格中的数据可得,
这批“金心大红”花径的众数为6.7,
故选:.
【点评】本题考查众数,解答本题的关键是明确众数的含义,会求一组数据的众数.
7.(4分)如图,菱形的顶点,,在上,过点作的切线交的延长线于点.若的半径为1,则的长为
A.1 B.2 C. D.
【分析】连接,根据菱形的性质得到,求得,根据切线的性质得到,解直角三角形即可得到结论.
【解答】解:连接,
四边形是菱形,
,
,
,
,
是的切线,
,
,
,
故选:.
【点评】本题考查了切线的性质,菱形的性质,等边三角形的判定和性质,解直角三角形,熟练正确切线的性质定理是解题的关键.
8.(4分)如图,在离铁塔150米的处,用测倾仪测得塔顶的仰角为,测倾仪高为1.5米,则铁塔的高为
A.米 B.米
C.米 D.米
【分析】过点作,为垂足,再由锐角三角函数的定义求出的长,由即可得出结论.
【解答】解:过点作,为垂足,如图所示:
则四边形为矩形,,
,
在中,,
,
,
故选:.
【点评】本题考查的是解直角三角形的应用仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
9.(4分)已知,,是抛物线上的点,则
A. B. C. D.
【分析】求出抛物线的对称轴为直线,然后根据二次函数的增减性和对称性解答即可.
【解答】解:抛物线的对称轴为直线,
,
时,函数值最大,
又到的距离比1到的距离小,
.
故选:.
【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.
10.(4分)如图,在中,,以其三边为边向外作正方形,过点作于点,再过点作分别交边,于点,.若,,则的长为
A.14 B.15 C. D.
【分析】如图,连接,.设交于.证明,推出,由,可得,,由,推出,设,,证明四边形是平行四边形,推出,根据,构建方程求出即可解决问题.
【解答】解:如图,连接,.设交于.
四边形,四边形都是正方形,
,
,,
,
,,共线,,,共线,
,
,
,
,
,
,
,,
,
,设,,
,,
,
,,
四边形是平行四边形,
,
,
,
(负根已经舍弃),
,,
,
,
,
,
故选:.
【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会踢脚线有辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)分解因式: .
【分析】直接利用平方差进行分解即可.
【解答】解:原式,
故答案为:.
【点评】此题主要考查了运用公式法分解因式,关键是掌握平方差公式:.
12.(5分)不等式组的解为 .
【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.
【解答】解:,
解①得;
解②得.
故不等式组的解集为.
故答案为:.
【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
13.(5分)若扇形的圆心角为,半径为3,则该扇形的弧长为 .
【分析】根据弧长公式,代入相应数值进行计算即可.
【解答】解:根据弧长公式:,
故答案为:.
【点评】此题主要考查了弧长的计算,关键是掌握弧长公式.
14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在及以上的生猪有 140 头.
【分析】根据题意和直方图中的数据可以求得质量在及以上的生猪数,本题得以解决.
【解答】解:由直方图可得,
质量在及以上的生猪:(头,
故答案为:140.
【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.
15.(5分)点,,在反比例函数(常数,图象上的位置如图所示,分别过这三个点作轴、轴的平行线.图中所构成的阴影部分面积从左到右依次为,,.若,,则的
值为 .
【分析】设,则,,,,,,推出,,,推出,,,推出,根据,求出,,即可.
【解答】解:,
可以假设,
则,,,,,,
,,,
,,,
,
,
,,,
故答案为.
【点评】本题考查反比例函数系数的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
16.(5分)如图,在河对岸有一矩形场地,为了估测场地大小,在笔直的河岸上依次取点,,,使,,点,,在同一直线上.在点观测点后,沿方向走到点,观测点发现.测得米,米,米,,则场地的边为 米,为 米.
【分析】根据已知条件得到和是等腰直角三角形,求得(米,(米,于是得到(米;过作于,过作交于,交于,根据矩形的性质得到,,,根据相似三角形的性质即可得到结论.
【解答】解:,,
,
和是等腰直角三角形,
,,
米,米,米,
(米,(米,
,,
(米;
过作于,过作交于,交于,
,
四边形和四边形是矩形,
,,,
,,
,
,
设,,
,,
,
,
,
,
,
,
,
,
,
故答案为:,.
【点评】本题考查了相似三角形的应用,矩形的性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.
三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(10分)(1)计算:.
(2)化简:.
【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;
(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.
【解答】解:(1)原式
;
(2)
.
【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.
18.(8分)如图,在和中,,,点,,依次在同一直线上,且.
(1)求证:.
(2)连结,当,时,求的长.
【分析】(1)由“”可证;
(2)由全等三角形的性质可得,由勾股定理可求解.
【解答】证明:(1),
,
又,,
;
(2),
,
,
.
【点评】本题考查了全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定方法是本题的关键.
19.(8分),两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.
(1)要评价这两家酒店月的月盈利的平均水平,你选择什么统计量?求出这个统计量.
(2)已知,两家酒店月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.
【分析】(1)由要评价两家酒店月盈利的平均水平,即可得选择两家酒店月盈利的平均值,然后利用求平均数的方法求解即可求得答案;
(2)平均数,盈利的方差反映酒店的经营业绩,酒店的经营状况较好.
【解答】解:(1)选择两家酒店月盈利的平均值;
,
;
(2)平均数,方差反映酒店的经营业绩,酒店的经营状况较好.
理由:酒店盈利的平均数为2.5,酒店盈利的平均数为2.3.酒店盈利的方差为1.073,酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是酒店比较大,且盈利折线是持续上升的,故酒店的经营状况较好.
【点评】此题考查了折线统计图的知识.此题难度适中,注意掌握折线统计图表达的实际意义是解此题的关键.
20.(8分)如图,在的方格纸中,请按要求画格点线段(端点在格点上),且线段的端点均不与点,,,重合.
(1)在图1中画格点线段,各一条,使点,,,分别落在边,,,上,且,不平行.
(2)在图2中画格点线段,各一条,使点,,,分别落在边,,,上,且.
【分析】(1)根据题意画出线段即可;
(2)根据题意画出线段即可.
【解答】解:(1)如图1,线段和线段即为所求;
(2)如图2,线段和线段即为所求.
【点评】本题考查了作图应用与设计作图,熟练掌握勾股定理是解题的关键.
21.(10分)已知抛物线经过点,.
(1)求,的值.
(2)若,是抛物线上不同的两点,且,求的值.
【分析】(1)把点,代入解方程组即可得到结论;
(2)把代入得到,于是得到,即可得到结论.
【解答】解:(1)把点,代入得,,
解得:;
(2)由(1)得函数解析式为,
把代入得,,
,
,
对称轴为,
.
【点评】本题考查了二次函数图象上点的坐标特征,解方程组,正确的理解题意是解题的关键.
22.(10分)如图,,为上两点,且在直径两侧,连结交于点,是上一点,.
(1)求证:.
(2)点关于的对称点为,连结.当点落在直径上时,,,求的半径.
【分析】(1)根据圆周角定理和为的直径,即可证明;
(2)连接,根据垂径定理可得,再根据对称性可得,进而可得的长,再根据锐角三角函数即可求出的半径.
【解答】解:(1),
,
为的直径,
,
;
(2)如图,连接,
,是的直径,
,,
,
点,关于对称,
,
,
,
,
,
,
,
,
的半径为.
【点评】本题考查了圆周角定理、轴对称的性质、解直角三角形,解决本题的关键是掌握轴对称的性质.
23.(12分)某经销商3月份用18000元购进一批恤衫售完后,4月份用39000元购进一批相同的恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批恤衫多少件?
(2)4月份,经销商将这批恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出件以后,剩余的按标价八折全部售出;乙店同样按标价卖出件,然后将件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含的代数式表示.
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
【分析】(1)根据4月份用39000元购进一批相同的恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批恤衫多少件;
(2)①根据甲乙两店的利润相同,可以得到关于、的方程,然后化简,即可用含的代数式表示;
②根据题意,可以得到利润与的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到的取值范围,从而可以求得乙店利润的最大值.
【解答】解:(1)设3月份购进件恤衫,
,
解得,,
经检验,是原分式方程的解,
则,
答:4月份进了这批恤衫300件;
(2)①每件恤衫的进价为:(元,
化简,得
;
②设乙店的利润为元,
,
乙店按标价售出的数量不超过九折售出的数量,
,
即,
解得,,
当时,取得最大值,此时,
答:乙店利润的最大值是3900元.
【点评】本题考查一次函数的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答,注意分式方程要检验.
24.(14分)如图,在四边形中,,,分别平分,,并交线段,于点,(点,不重合).在线段上取点,(点在之间),使.当点从点匀速运动到点时,点恰好从点匀速运动到点.记,,已知,当为中点时,.
(1)判断与的位置关系,并说明理由.
(2)求,的长.
(3)若.
①当时,通过计算比较与的大小关系.
②连结,当所在直线经过四边形的一个顶点时,求所有满足条件的的值.
【分析】(1)推出,即可得出;
(2)求出,,把代入,解得,即,得出,由,,得出,,即可得出结果;
(3)连接并延长交于点,易证四边形是平行四边形,得出,求出,,,得出,,,,由勾股定理得,,当时,求出,即可得出;
②(Ⅰ)当经过点时,,则;
(Ⅱ)当经过点时,由,得出,则,即可求出;
(Ⅲ)当经过点时,由,得出,则,求出,,即可得出,由图可知,不可能过点.
【解答】解:(1)与的位置关系为:,理由如下:
如图1所示:
,
,
、分别平分、,
,,
,
,
,
;
(2)令,得,
,
令,得,
,
把代入,
解得:,即,
,
是中点,
,
,
,
解得:,
,
;
(3)①连接并延长交于点,如图2所示:
,,
四边形是平行四边形,
,
,,,
,
,
,
,
,
,
,
,,
,
,
由勾股定理得:,
,
当时,,
解得:,
,
,
;
②(Ⅰ)当经过点时,如图3所示:
,
则;
(Ⅱ)当经过点时,如图4所示:
,,,
,
,
,
,
,
,
解得:;
(Ⅲ)当经过点时,如图5所示:
,
,
,
由勾股定理得:,
,
,
解得:,
由图可知,不可能过点;
综上所述,当或或时,所在的直线经过四边形的一个顶点.
【点评】本题是四边形综合题,主要考查了平行四边形的的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.
2023年浙江省温州市中考数学试卷: 这是一份2023年浙江省温州市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年浙江省温州市中考数学试卷(解析版): 这是一份2020年浙江省温州市中考数学试卷(解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年浙江省温州市中考数学试卷解析版: 这是一份2022年浙江省温州市中考数学试卷解析版,共41页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。