2021年九年级数学中考一轮复习高频考点《垂线段最短性质应用》专题训练含答案
展开2021年九年级数学中考一轮复习《垂线段最短性质应用》专题突破训练
1.下列生活实例中,数学原理解释错误的一项是( )
A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线
B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短
C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线
D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短
2.点P是直线l外一点,A、B、C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离( )
A.小于2cm B.等于2cm C.不大于2cm D.等于4cm
3.如图所示,小明同学的家在P处,他想尽快赶到附近公路边搭乘公交车,他选择P→C路线,用数学知识解释其道理正确的是( )
A.两点确定一条直线 B.垂线段最短
C.两点之间线段最短 D.三角形两边之和大于第三边
4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在( )
A.A点 B.B点 C.C点 D.D点
5.如图,A是直线l外一点,过点A作AB⊥l于点B,在直线l上取一点C,连结AC,使AC=2AB,P在线段BC上连结AP.若AB=3,则线段AP的长不可能是( )
A.3.5 B.4 C.5.5 D.6.5
6.体育课上,老师测量跳远成绩的依据是( )
A.平行线间的距离相等 B.两点之间,线段最短
C.垂线段最短 D.两点确定一条直线
7.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是( )
A.两点之间线段最短 B.过两点有且只有一条直线
C.垂线段最短 D.过一点可以作无数条直线
8.如图,河道l的一侧有A、B两个村庄,现要铺设一条引水管道把河水引向A、B两村,下列四种方案中最节省材料的是( )
A. B.
C. D.
9.如图,计划把河水引到水池A中,可以先引AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是( )
A.垂线段最短 B.两点之间,线段最短
C.两点确定一条直线 D.两点之间,直线最短
10.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0) B.(,﹣) C.(﹣,﹣) D.(﹣,﹣)
11.如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围( )
A.大于b B.小于a
C.大于b且小于a D.无法确定
12.如图,要把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,水沟最短,理由是( )
A.两点之间线段最短 B.两点确定一条直线
C.垂线段最短 D.过一点可以作无数条直线
13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .
14.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据: .
15.如图,计划把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .
16.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是 .
17.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段PA,PB,PC,PD,PE中,最短的一条线段是 ,理由是
18.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是 .
19.如图所示,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是 .
20.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是 .
21.如图所示,想在河的两岸搭建一座桥,沿线段 搭建最短,理由是 .
22.如图,△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,P为直线AB上一动点,连PC,则线段PC的最小值是 .
23.如图,要把池中的水引到D处,可过D点作CD⊥AB于C,然后沿CD开渠,可使所开渠道最短,试说明设计的依据: .
24.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为 .
2021年九年级数学中考一轮复习《垂线段最短性质应用》专题突破训练答案
1.解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;
B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;
C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;
D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.
故选:A.
2.解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短),
2<4<5,
∴点P到直线l的距离小于等于2,即不大于2,
故选:C.
3.解:某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,是因为垂直线段最短,
故选:B.
4.解:根据垂线段最短可得:应建在A处,
故选:A.
5.解:∵过点A作AB⊥l于点B,AC=2AB,P在线段BC上连结AP,AB=3,
∴AC=6,
∴3≤AP≤6,
故AP不可能是6.5,
故选:D.
6.解:体育课上,老师测量跳远成绩的依据是垂线段最短.
故选:C.
7.解:这样做的理由是垂线段最短.
故选:C.
8.解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:
故选:B.
9.解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,
∴沿AB开渠,能使所开的渠道最短.
故选:A.
10.解:线段AB最短,说明AB此时为点A到y=x的距离.
过A点作垂直于直线y=x的垂线AB,
∵直线y=x与x轴的夹角∠AOB=45°,
∴△AOB为等腰直角三角形,
过B作BC垂直x轴,垂足为C,
则BC为中垂线,
则OC=BC=.作图可知B在x轴下方,y轴的左方.
∴点B的横坐标为负,纵坐标为负,
∴当线段AB最短时,点B的坐标为(﹣,﹣).
故选:C.
11.解:∵AC⊥BC,AD⊥CD,AB=a,CD=b,
∴CD<AC<AB,
即b<AC<a.
故选:C.
12.解:从题意:把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,可知利用:垂线段最短.
故选:C.
13.解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,
∴沿AB开渠,能使所开的渠道最短.
故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.
14.解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.
故答案为:垂线段最短.
15.解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;
故答案为:垂线段最短.
16.解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短.
故答案为:垂线段最短.
17.解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.
故答案是:PC;垂线段最短.
18.解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.
故答案为:垂线段最短.
19.解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是垂线段最短,
故答案为:垂线段最短.
20.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.
故答案为:垂线段最短.
21.解:∵PM⊥MN,
∴由垂线段最短可知PM是最短的,
故答案为:PM,垂线段最短.
22.解:在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,
∵当PC⊥AB时,PC的值最小,
此时:•AB•PC=•AC•BC,
∴PC=,
故答案为.
23.解:过D点引CD⊥AB于C,然后沿CD开渠,可使所开渠道最短,根据垂线段最短.
24.解:当AE⊥BC时,四边形AEFD的周长最小,
∵AE⊥BC,AB=2,∠B=60°.
∴AE=3,BE=,
∵△ABE沿BC方向平移到△DCF的位置,
∴EF=BC=AD=7,
∴四边形AEFD周长的最小值为:14+6=20,
故答案为:20
2021年九年级数学中考一轮复习高频考点《轴对称确定最短路线》专题训练含答案: 这是一份2021年九年级数学中考一轮复习高频考点《轴对称确定最短路线》专题训练含答案,共41页。试卷主要包含了平面直角坐标系xOy中,已知A等内容,欢迎下载使用。
2021年九年级数学中考一轮复习高频考点《问题解决拓展应用型综合压轴题》专题训练含答案: 这是一份2021年九年级数学中考一轮复习高频考点《问题解决拓展应用型综合压轴题》专题训练含答案,共38页。试卷主要包含了观察猜想,【新知理解】,综合与探究等内容,欢迎下载使用。
2021年九年级数学中考一轮复习高频考点《几何图形的性质》专题训练含答案: 这是一份2021年九年级数学中考一轮复习高频考点《几何图形的性质》专题训练含答案,共17页。