初中数学浙教版八年级下册5.1 矩形精品课时练习
展开浙教版数学八年级下册5.1《矩形》
精选练习
一、选择题
1.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于( )
A.5 B.6 C.7 D.8
2.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有( )
①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.
A.①②③ B.①②④ C.②③④ D.①③④
3.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F.在下列结论中,不一定正确的是( )
A.△AFD≌△DCE B.2AF=AD C.AB=AF D.BE=AD-DF
4.如图,已知矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为( )
A.6cm2 B.8cm2 C.10cm2 D.12cm2
5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4
6.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )
A.600m2 B.551m2 C.550m2 D.500m2
7.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )
A. cm2 B.8cm2 C. cm2 D.16cm2
8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115° B.120° C.130° D.140°
9.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.11 B.16 C.19 D.22
10.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为( )
A.(0,-) B.(0,-) C.(0,-) D.(0,-)
11.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为( )
A.5 B.3 C.2 D.3
12.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米( )
A.50 B.50或40 C.50或40或30 D.50或30或20
二、填空题
13.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下方的点的坐标是(0,0),右下方的点的坐标是(32,0),左上方的点的坐标是(0,28),则右上方的点的坐标是
14.如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE,则DE的长为______________.
15.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点F,∠ADB=30°,则EF= .
16.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为
17.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系式是 .
18.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为 .
三、解答题
19.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.
20.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F。
(1)求证:AC=BE;
(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形。
21.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的。
22.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小。
23.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.
(1)求证:四边形ANCM为平行四边形;
(2)若AD=4,AB=2,且MN⊥AC,求DM的长
参考答案
1.C
2.答案为:B;
3.答案为:B.
4.A
5.D
6.B
7.B
8.A
9.D
10.B
11.C
12.答案为:C
解析:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:
①如图(1):△AEF中,AE=AF=10cm;S△AEF=0.5•AE•AF=50cm2;
②如图(2):△AGH中,AG=GH=10cm;
在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;
根据勾股定理有:BH=8cm;∴S△AGH=0.5AG•BH=0.5×8×10=40cm2;
③如图(3):△AMN中,AM=MN=10cm;
在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;
根据勾股定理有DN=6cm;∴S△AMN=0.5AM•DN=0.5×10×6=30cm2.
故选C.
13.答案为:(32,28)。
14.答案为: .
15.答案为: .
16.答案为:(10,3).
17.答案为:y=12x-1.
18.答案为:25/12.
19.证明:∵平行四边形ABCD,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,∠ABO=∠CDO,
在△ABE与△CDF中,
∴△ABE≌△CDF(SAS),
∴BE=DF,∠BAE=∠CDF,
∴∠ABO﹣∠BAE=∠CDO﹣∠CDF,
即∠EBO=∠DFO,
∴BE∥DF,
∴四边形EBDF是平行四边形,
∵EF=BD,
∴平行四边形EBDF是矩形.
20.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,
∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形,
∴AC=BE;
(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,
∴FA=FE,FB=FC,
∵四边形ABCD是平行四边形,∴∠ABC=∠D,
又∵∠AFC=2∠D,∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,
∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形。
21.解:当F为BC上的中点时,△FDE是等腰三角形,
证明:∵DC⊥DB,F为BC上的中点,∴DF=0.5BC,
∵BE⊥EC,F为BC上的中点,∴EF=0.5BC,∴DF=EF,
∴△FDE是等腰三角形。
22.答案为:45°;
解析:如图,连接AC,则AC=BD=CF,所以∠F=∠5
而且∠1=∠3∠4=∠6-∠7=∠BEF+∠F-∠7=90°-∠7+∠F=∠1+∠F=∠3+∠5=∠2
∴∠4=∠2=45°,∴∠BAF的度数为45°。
23.(1)证明:∵四边形ABCD是矩形
∴AD//BC,AM//NC
∴
在△AOM和△CON中
∴△AOM△CON
∴AM=NC
又∵
∴四边形ANCM为平行四边形.
(2)∵四边形ANCM为平行四边形
∵
∴平行四边形ANCM是菱形
∴AM=AN=NC
∵AD=BC=4
设BN的长度为x
在Rt△ABN中,AB=2,AN=4-x
x=1.5
AN=AM=2.5
∴DM=1.5.
初中数学浙教版八年级下册5.1 矩形精品随堂练习题: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c12223_t7/?tag_id=28" target="_blank">5.1 矩形精品随堂练习题</a>,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学浙教版八年级下册5.1 矩形课后练习题: 这是一份初中数学浙教版八年级下册5.1 矩形课后练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙教版八年级下册5.1 矩形优秀练习: 这是一份浙教版八年级下册5.1 矩形优秀练习,共10页。试卷主要包含了1《矩形》,对角线相等且互相平分的四边形是等内容,欢迎下载使用。