|试卷下载
终身会员
搜索
    上传资料 赚现金
    2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析
    立即下载
    加入资料篮
    2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析01
    2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析02
    2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析

    展开
    这是一份2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2019年湖南省邵阳市城步县中考数学模拟试卷(二)
    一、选择题(每小题四个选项中,只有一项最符合题意.本大题共12个小题,每小题3分,共36分)
    1.给出四个数,,其中为无理数的是(  )
    A.﹣1 B.0 C.0.5 D.
    2.下列图形中,不是中心对称图形的是(  )
    A. B. C. D.
    3.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是(  )
    A.直接观察 B.查阅文献资料
    C.互联网查询 D.测量
    4.一次函数y=2x+1的图象不经过第(  )象限.
    A.一 B.二 C.三 D.四
    5.若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是(  )
    A.k>﹣1 B.k<﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠0
    6.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(  )

    A.1 B. C. D.2
    7.已知△ABC的两个内角∠A=30°,∠B=70°,则△ABC是(  )
    A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
    8.Rt△ABC中,∠C=90°,若BC=2,AC=3,下列各式中正确的是 (  )
    A. B. C. D.
    9.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=(  )

    A. B. C. D.
    10.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知(  )
    A.(1)班比(2)班的成绩稳定
    B.(2)班比(1)班的成绩稳定
    C.两个班的成绩一样稳定
    D.无法确定哪班的成绩更稳定
    11.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是(  )

    A.13 B.14 C.15 D.16
    12.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=(  )

    A. B. C. D.
    二、填空题(本大题共8小题;共24分)
    13.﹣5的相反数是   ;﹣5的绝对值是   ;﹣5的立方是   ;﹣0.5的倒数是   .
    14.写一个有两个相等的实数根的一元二次方程:   .
    15.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为   克.
    16.在△ABC中,∠A=60°,∠B=2∠C,则∠B=   °.
    17.在半径为6cm的圆中,圆心角为120°的扇形的面积是   cm2.
    18.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有   个正方形.

    19.已知▱ABCD的顶点B(1,1),C(5,1),直线BD,CD的解析式分别是y=kx,y=mx﹣14,则BC=   ,点A的坐标是   .
    20.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为   .

    三、解答题(本大题共7小题;共60分)
    21.(1)计算:﹣|﹣|+(﹣)﹣1﹣2sin60°
    (2)解方程﹣=.
    22.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆.要使得每天利润达到1200元,则每盆兰花售价应定为多少元?
    23.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    24.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?

    25.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.

    26.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
    (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
    (2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
    (3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.
    27.如图,AB是⊙O的直径,=,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
    (1)求∠BAC的度数;
    (2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
    (3)在点P的运动过程中
    ①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
    ②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.


    2019年湖南省邵阳市城步县中考数学模拟试卷(二)
    参考答案与试题解析
    一、选择题(每小题四个选项中,只有一项最符合题意.本大题共12个小题,每小题3分,共36分)
    1.给出四个数,,其中为无理数的是(  )
    A.﹣1 B.0 C.0.5 D.
    【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断.
    【解答】解:结合所给的数可得,无理数有:.
    故选:D.
    【点评】此题考查了无理数的定义,关键要掌握无理数的三种形式,要求我们熟练记忆.
    2.下列图形中,不是中心对称图形的是(  )
    A. B. C. D.
    【分析】根据中心对称图形的概念求解.
    【解答】解:A、是中心对称图形,故本选项错误;
    B、不是中心对称图形,故本选项正确;
    C、是中心对称图形,故本选项错误;
    D、是中心对称图形,故本选项错误;
    故选:B.
    【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是(  )
    A.直接观察 B.查阅文献资料
    C.互联网查询 D.测量
    【分析】要得出某校八年级(3)班体训队员的身高,需要测量.
    【解答】解:因为要对篮球队员的身高的数据进行收集和整理,获得这组数据方法应该是测量.
    故选:D.
    【点评】此题主要考查了调查收集数据的过程与方法,解答此题要明确,调查要进行数据的收集、整理.
    4.一次函数y=2x+1的图象不经过第(  )象限.
    A.一 B.二 C.三 D.四
    【分析】根据一次函数图象的性质可得出答案.
    【解答】解:∵2>0,1>0,
    ∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.
    故选:D.
    【点评】此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    5.若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是(  )
    A.k>﹣1 B.k<﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠0
    【分析】根据△的意义得到k≠0且△=4﹣4k×(﹣1)>0,然后求出两不等式的公共部分即可.
    【解答】解:∵x的方程kx2+2x﹣1=0有两个不相等的实数根,
    ∴k≠0且△=4﹣4k×(﹣1)>0,解得k>﹣1,
    ∴k的取值范围为k>﹣1且k≠0.
    故选:D.
    【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
    6.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(  )

    A.1 B. C. D.2
    【分析】先根据圆周角定理证得△ABC是直角三角形,然后根据直角三角形的性质求出AC的长.
    【解答】解:∵AB是⊙O的直径,
    ∴∠ACB=90°;
    Rt△ABC中,∠ABC=30°,AB=4;
    ∴AC=AB=2.
    故选:D.
    【点评】本题考查的是圆周角定理的推论和直角三角形的性质.
    7.已知△ABC的两个内角∠A=30°,∠B=70°,则△ABC是(  )
    A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
    【分析】根据题意,可以求得∠C的度数,然后将△ABC各个内角的度数即可判断△ABC的形状.
    【解答】解:∵△ABC的两个内角∠A=30°,∠B=70°,
    ∴∠C=180°﹣∠A﹣∠B=80°,
    ∵∠A=30°,∠B=70°,∠C=80°,
    ∴△ABC是锐角三角形,
    故选:A.
    【点评】本题考查三角形内角和,解答本题的关键是明确题意,利用三角形内角和的知识解答.
    8.Rt△ABC中,∠C=90°,若BC=2,AC=3,下列各式中正确的是 (  )
    A. B. C. D.
    【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.
    【解答】解:∵∠C=90°,BC=2,AC=3,
    ∴AB=,
    A.sinA===,故此选项错误;
    B.cosA==,故此选项错误;
    C.tanA==,故此选项正确;
    D.cotA==,故此选项错误.
    故选:C.
    【点评】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键.
    9.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=(  )

    A. B. C. D.
    【分析】过E作EH⊥CF于H,由折叠的性质得BE=EF,∠BEA=∠FEA,由点E是BC的中点,得到CE=BE,得到△EFC是等腰三角形,根据等腰三角形的性质得到∠FEH=∠CEH,推出△ABE∽△EHC,求得EH=,结果可求sin∠ECF==.
    【解答】解:过E作EH⊥CF于H,
    由折叠的性质得:BE=EF,∠BEA=∠FEA,
    ∵点E是BC的中点,
    ∴CE=BE,
    ∴EF=CE,
    ∴∠FEH=∠CEH,
    ∴∠AEB+∠CEH=90°,
    在矩形ABCD中,
    ∵∠B=90°,
    ∴∠BAE+∠BEA=90°,
    ∴∠BAE=∠CEH,∠B=∠EHC,
    ∴△ABE∽△EHC,
    ∴,
    ∵AE==10,
    ∴EH=,
    ∴sin∠ECF=sin∠ECH==,
    (方法二,可以证明∠AEB=∠ECF,求出AE=10,sin∠ECF=sin∠AEB=)
    故选:D.

    【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.
    10.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知(  )
    A.(1)班比(2)班的成绩稳定
    B.(2)班比(1)班的成绩稳定
    C.两个班的成绩一样稳定
    D.无法确定哪班的成绩更稳定
    【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【解答】解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,
    ∴(1)班成绩的方差>(2)班成绩的方差,
    ∴(2)班比(1)班的成绩稳定.
    故选:B.
    【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    11.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是(  )

    A.13 B.14 C.15 D.16
    【分析】六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
    【解答】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.
    因为六边形ABCDEF的六个角都是120°,
    所以六边形ABCDEF的每一个外角的度数都是60°.
    所以△AFI、△BGC、△DHE、△GHI都是等边三角形.
    所以AI=AF=3,BG=BC=1.
    所以GI=GH=AI+AB+BG=3+3+1=7,DE=HE=HI﹣EF﹣FI=7﹣2﹣3=2,CD=HG﹣CG﹣HD=7﹣1﹣2=4.
    所以六边形的周长为3+1+4+2+2+3=15;
    故选:C.

    【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.
    12.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=(  )

    A. B. C. D.
    【分析】解法一:作G′R⊥BC于R,则四边形RCIG′是正方形.首先证明点F′在线段BC上,再证明CH=HE′即可解决问题.
    解法二:首先证明CG′+CE′=AC,作G′M⊥AD于M.解直角三角形求出DM,AM,AD即可;
    【解答】解法一:作G′R⊥BC于R,则四边形RCIG′是正方形.
    ∵∠DG′F′=∠IG′R=90°,
    ∴∠DG′I=∠RG′F′,
    在△G′ID和△G′RF中

    ∴△G′ID≌△G′RF,
    ∴∠G′ID=∠G′RF′=90°,
    ∴点F′在线段BC上,
    在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,
    ∴E′H=E′F′=1,F′H=,
    易证△RG′F′≌△HF′E′,
    ∴RF′=E′H,RG′=RC=F′H,
    ∴CH=RF′=E′H,
    ∴CE′=,
    ∵RG′=HF′=,
    ∴CG′=RG′=,
    ∴CE′+CG′=+.
    故选A.
    解法二:作G′M⊥AD于M.
    易证△DAG'≌△DCE',
    ∴AG'=CE',
    ∴CG′+CE′=AC,
    在Rt△DMG′中,∵DG′=2,∠MDG′=30°,
    ∴MG′=1,DM=,
    ∵∠MAG′=45°,∠AMG′=90°,
    ∴∠MAG′=∠MG′A=45°,
    ∴AM=MG′=1,
    ∴AD=1+,
    ∵AC=AD,
    ∴AC=+.
    故选:A.


    【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
    二、填空题(本大题共8小题;共24分)
    13.﹣5的相反数是 5 ;﹣5的绝对值是 5 ;﹣5的立方是 ﹣125 ;﹣0.5的倒数是 ﹣2 .
    【分析】根据相反数、绝对值、倒数的意义以及有理数的乘方法则即可求解.
    【解答】解:﹣5的相反数是5;﹣5的绝对值是5;﹣5的立方是﹣125;﹣0.5的倒数是﹣2.
    故答案为5;5;﹣125;﹣2.
    【点评】本题考查了有理数的乘方,相反数、绝对值、倒数的意义,是基础知识,需熟练掌握.
    14.写一个有两个相等的实数根的一元二次方程: x2+2x+1=0 .
    【分析】一元二次方程有两个相等的实数根,判别式等于0.答案不唯一.
    【解答】解:∵一元二次方程有两个相等的实数根,
    ∴b2﹣4ac=0,
    符合条件的一元二次方程为x2+2x+1=0(答案不唯一),
    故答案为:x2+2x+1=0.
    【点评】本题是一个开放性的题目,考查了一元二次方程的判别式,是一个基础性的题目.
    15.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为 不少于1.5 克.
    【分析】根据题意求出蛋白质含量的最小值即可.
    【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,
    ∴蛋白质含量的最小值=300×0.5%=1.5克,
    ∴白质的含量不少于1.5克.
    故答案是:不少于1.5
    【点评】本题考查的是不等式的定义,根据题意求出蛋白质含量的最小值是解答此题的关键.
    16.在△ABC中,∠A=60°,∠B=2∠C,则∠B= 80 °.
    【分析】根据三角形的内角和定理和已知条件求得.
    【解答】解:∵∠A=60°,
    ∴∠B+∠C=120°,
    ∵∠B=2∠C,
    ∴∠B=80°.
    故答案为:80.
    【点评】主要考查了三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.
    17.在半径为6cm的圆中,圆心角为120°的扇形的面积是 12π cm2.
    【分析】将所给数据直接代入扇形面积公式进行计算即可得出答案.
    【解答】解:由题意得,n=120°,R=6cm,
    故圆心角为120°的扇形的面积==12π(cm2).
    故答案为12π.
    【点评】此题考查了扇形面积的计算,属于基础题,解答本题的关键是熟记扇形的面积公式及公式中字母所表示的含义,难度一般.
    18.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有 55 个正方形.

    【分析】由已知图形得出第n个图形中小正方形的个数为12+22+…+(n﹣1)2+n2,据此可得.
    【解答】解:由题意知,第五个图形中正方形有12+22+32+42+52=55(个),
    故答案为:55.
    【点评】本题主要考查图形的变化规律,解题的关键是掌握第n个图形中小正方形的个数为12+22+…+(n﹣1)2+n2.
    19.已知▱ABCD的顶点B(1,1),C(5,1),直线BD,CD的解析式分别是y=kx,y=mx﹣14,则BC= 4 ,点A的坐标是 (3,7) .
    【分析】由顶点B(1,1),C(5,1),即可求得BC的长,又由直线BD,CD的解析式分别是y=kx,y=mx﹣14,利用待定系数法即可求得k与m的值,继而求得D的坐标,再由四边形ABCD是平行四边形,根据平移的性质,即可求得答案.
    【解答】解:∵顶点B(1,1),C(5,1),
    ∴BC=5﹣1=4;
    ∵直线BD,CD的解析式分别是y=kx,y=mx﹣14,
    ∴1=k,1=5m﹣14,
    解得:k=1,m=3,
    ∴直线BD,CD的解析式分别是y=x,y=3x﹣14,
    ∴,
    解得:,
    ∴D的坐标为:(7,7),
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∴A的坐标为:(3,7).
    故答案为:4,(3,7).
    【点评】此题考查了平行四边形的性质以及一次函数的交点问题.注意掌握平移的性质的应用是解此题的关键.
    20.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为 8 .

    【分析】由题意A(﹣4,4),B(2,2),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN计算即可.
    【解答】解:∵A(﹣4,4),B(2,2),
    ∴OA⊥OB,
    建立如图新的坐标系,OB为x′轴,OA为y′轴.

    在新的坐标系中,A(0,8),B(4,0),
    ∴直线AB解析式为y′=﹣2x′+8,
    由,解得或,
    ∴M(1,6),N(3,2),
    ∴S△OMN=S△OBM﹣S△OBN=•4•6﹣•4•2=8,
    故答案为8.
    【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.
    三、解答题(本大题共7小题;共60分)
    21.(1)计算:﹣|﹣|+(﹣)﹣1﹣2sin60°
    (2)解方程﹣=.
    【分析】(1)原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【解答】解:(1)原式=3﹣﹣2﹣=﹣2;
    (2)去分母得:3﹣2x=x﹣2,
    解得:x=,
    经检验x=是分式方程的解.
    【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    22.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆.要使得每天利润达到1200元,则每盆兰花售价应定为多少元?
    【分析】设每盆兰花售价定为x元,则每天可售出20+2(140﹣x)=300﹣2x盆兰花,根据总利润=单盘利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x值,取其较小值即可.
    【解答】解:设每盆兰花售价定为x元,则每天可售出20+2(140﹣x)=300﹣2x盆兰花,
    据题意得:(x﹣100)(300﹣2x)=1200,
    整理得:x2﹣250x+15600=0,
    解得:x1=120,x2=130,
    ∴为扩大销量,增加利润,
    ∴x=120.
    答:要使得每天利润达到1200元,则每盆兰花售价应定为120元.
    【点评】本题考查了一元二次方程的应用,据总利润=单盘利润×销售数量,列出关于x的一元二次方程是解题的关键.
    23.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    【分析】在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.
    【解答】解:作PE⊥OB于点E,PF⊥CO于点F,
    在Rt△AOC中,AO=100,∠CAO=60°,
    ∴CO=AO•tan60°=100(米).
    设PE=x米,
    ∵tan∠PAB==,
    ∴AE=2x.
    在Rt△PCF中,∠CPF=45°,CF=100﹣x,PF=OA+AE=100+2x,
    ∵PF=CF,
    ∴100+2x=100﹣x,
    解得x=(米).
    答:电视塔OC高为100米,点P的铅直高度为(米).

    【点评】本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
    24.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?

    【分析】首先设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,然后分别从当△APQ∽△ABC与当△APQ∽△ACB时去分析求解即可求得答案.
    【解答】解:设运动了ts,
    根据题意得:AP=2tcm,CQ=3tcm,
    则AQ=AC﹣CQ=16﹣3t(cm),
    当△APQ∽△ABC时,,
    即,
    解得:t=;
    当△APQ∽△ACB时,,
    即,
    解得:t=4;
    故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是: s或4s.
    【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握方程思想、分类讨论思想与数形结合思想的应用.
    25.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.

    【分析】先根据三角形内角和定理求出∠BAC的度数,由角平分线的定义得出∠BAD的度数,根据三角形外角的性质求出∠ADE的度数,由两角互补的性质即可得出结论.
    【解答】解:∵∠ABC=38°,∠ACB=100°(己知)
    ∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).
    又∵AD平分∠BAC(己知),
    ∴∠BAD=21°,
    ∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).
    又∵AE是BC边上的高,即∠E=90°,
    ∴∠DAE=90°﹣59°=31°.
    【点评】此题考查的是三角形的内角和定理,熟知三角形内角和是180°是解答此题的关键.
    26.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
    (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
    (2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
    (3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.
    【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;
    (2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;
    (3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.
    【解答】(1)四边形APQD为平行四边形;
    (2)OA=OP,OA⊥OP,理由如下:
    ∵四边形ABCD是正方形,
    ∴AB=BC=PQ,∠ABO=∠OBQ=45°,
    ∵OQ⊥BD,
    ∴∠PQO=45°,
    ∴∠ABO=∠OBQ=∠PQO=45°,
    ∴OB=OQ,
    在△AOB和△OPQ中,


    ∴△AOB≌△POQ(SAS),
    ∴OA=OP,∠AOB=∠POQ,
    ∴∠AOP=∠BOQ=90°,
    ∴OA⊥OP;
    (3)如图,过O作OE⊥BC于E.
    ①如图1,当P点在B点右侧时,
    则BQ=x+2,OE=,
    ∴y=וx,即y=(x+1)2﹣,
    又∵0≤x≤2,
    ∴当x=2时,y有最大值为2;
    ②如图2,当P点在B点左侧时,
    则BQ=2﹣x,OE=,
    ∴y=וx,即y=﹣(x﹣1)2+,
    又∵0≤x≤2,
    ∴当x=1时,y有最大值为;
    综上所述,∴当x=2时,y有最大值为2.


    【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.
    27.如图,AB是⊙O的直径,=,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
    (1)求∠BAC的度数;
    (2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
    (3)在点P的运动过程中
    ①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
    ②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.

    【分析】(1)只要证明△ABC是等腰直角三角形即可;
    (2)只要证明CB=CP,CB=CA即可;、
    (3)①分四种情形分别画出图形一一求解即可;
    ②分两种情形如图6中,作EK⊥PC于K.只要证明四边形ADBC是正方形即可解决问题;如图7中,连接OC,作BG⊥CP于G,EK⊥PC于K.由△AOQ∽△ADB,可得S△ABD=,可得S△PBD=S△ABP﹣S△ABD=,再根据S△BDE=•S△PBD计算即可解决问题;
    【解答】解:(1)如图1中,连接BC.

    ∵=,
    ∴BC=CA,
    ∵AB是直径,
    ∴∠ACB=90°,
    ∴∠BAC=∠CBA=45°.

    (2)解:如图1中,设PB交CD于K.
    ∵=,
    ∴∠CDB=∠CDP=45°,CB=CA,
    ∴CD平分∠BDP,又∵CD⊥BP,
    ∴∠DKB=∠DKP=90°,∵DK=DK,
    ∴△DKB≌△DKP,
    ∴BK=KP,
    即CD是PB的中垂线,
    ∴CP=CB=CA.

    (3)①(Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;

    理由:连接BD、OC.作BG⊥PC于G.则四边形OBGC是正方形,
    ∵BG=OC=OB=CG,
    ∵BA=BA,
    ∴PB=2BG,
    ∴∠BPG=30°,
    ∵AB∥PC,
    ∴∠ABP=30°,
    ∵BD垂直平分AP,
    ∴∠ABD=∠ABP=15°,
    ∴∠ACD=15°
    (Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;

    理由:作BG⊥CP于G.
    同法可证∠BPG=30°,可得∠APB=∠BAP=∠APC=15°,
    ∴∠ABD=75°,
    ∵∠ACD+∠ABD=180°,
    ∴∠ACD=105°;
    (Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;

    理由:作AH⊥PC于H,连接BC.
    同法可证∠APH=30°,可得∠DAC=75°,∠D=∠ABC=45°,
    ∴∠ACD=60°;
    (Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°

    理由:作AH⊥PC于H.
    同法可证:∠APH=30°,可得∠ADC=45°,∠DAC=60°﹣45°=15°,
    ∴∠ACD=120°.
    ②如图6中,作EK⊥PC于K.

    ∵EK=CK=3,
    ∴EC=3,
    ∵AC=6,
    ∴AE=EC,
    ∵AB∥PC,
    ∴∠BAE=∠PCE,∵∠AEB=∠PEC,
    ∴△ABE≌△CPE,
    ∴PC=AB=CD,
    ∴△PCD是等腰直角三角形,可得四边形ADBC是正方形,
    ∴S△BDE=•S正方形ADBC=36.
    如图7中,连接OC,作BG⊥CP于G,EK⊥PC于K.

    由题意CK=EK=3,PK=1,PG=2,
    由△AOQ∽△PCQ,可得QC=,
    PQ2=,
    由△AOQ∽△ADB,可得S△ABD=,
    ∴S△PBD=S△ABP﹣S△ABD=,
    ∴S△BDE=•S△PBD=
    综上所,满足条件的△BDE的面积为36或.
    【点评】本题考查圆综合题、等腰直角三角形的性质和判定、相似三角形的判定和性质、切线的性质、线段的垂直平分线的性质和判定、直角三角形中30度角的判定等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.


    相关试卷

    湖南省邵阳市城步县2023-2024学年数学八上期末综合测试模拟试题含答案: 这是一份湖南省邵阳市城步县2023-2024学年数学八上期末综合测试模拟试题含答案,共7页。试卷主要包含了下列命题是假命题的是,方程的公共解是等内容,欢迎下载使用。

    2021年湖南省邵阳市邵阳县中考数学模拟试卷二: 这是一份2021年湖南省邵阳市邵阳县中考数学模拟试卷二,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省邵阳市城步县重点名校2021-2022学年中考一模数学试题含解析: 这是一份湖南省邵阳市城步县重点名校2021-2022学年中考一模数学试题含解析,共23页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2019年湖南省邵阳市城步县中考数学模拟试卷(二)含答案解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map