|教案下载
终身会员
搜索
    上传资料 赚现金
    【精品】新华东师大版 七年级数学下册第9章多边形9.3用正多边形铺设地面教案新
    立即下载
    加入资料篮
    【精品】新华东师大版 七年级数学下册第9章多边形9.3用正多边形铺设地面教案新01
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学华师大版七年级下册9.3 用正多边形铺设地面综合与测试教案设计

    展开
    这是一份初中数学华师大版七年级下册9.3 用正多边形铺设地面综合与测试教案设计,共3页。教案主要包含了创设情境,探索问题,引入新知,巩固练习,小结与作业等内容,欢迎下载使用。







    1.通过用相同的正多边形拼地板活动,巩固多边形的内角和与外角和公式.


    2.探索用多种正多边形拼地板的过程和原理.





    重点


    通过用两种以上正多边形拼地板,提高学生观察、分析、概括、抽象等能力.


    难点


    通过操作使学生发现能拼成一个平面图形的关键.





    一、创设情境、复习引入


    回到开始提出的问题:某些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙?地砖或瓷砖的形状大多数是正多边形,是不是所有的正多边形都能铺满地面呢?


    二、探索问题,引入新知


    探究1:用相同的正多边形


    使用给定的某种正多边形,它能否拼成一个平面图形,既不留下一丝空白,又不相互重叠?





    通过学生动手拼图,使他们发现能拼成既不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个正多边形的内角相加恰好等于360°.


    下面再通过计算,看看哪些正多边形能拼成符合以上条件的图形.完成下表:





    当[360°÷eq \f((n-2)·180°,n)]为正整数时,即eq \f(2n,n-2)为正整数时,用这样的正多形就可以铺满地面.


    结论:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就可以拼成一个平面图形.


    探究2:用多种正多边形


    用正三角形和正六边形能铺满地面吗?为什么?





    由正六边形和正三角形组成也能铺满地面.


    因为正六边形的内角为120°,正三角形的内角为60°,这样用2块正六边形和2块正三角形,它们内角之和为一个周角360°,所以能铺满地面.(即:2×120°+2×60°=360°)


    能不能用其他两种或两种以上的正多边形铺地板呢?





    如图①:是用正八边形和正方形拼成的.因为正八边形的内角为135°,正方形的内角为90°,那么用2个正八边形和1个正方形各一内角之和正好等于360°,所以可以铺满地板.(即:2×135°+90°=360°)


    如图②:是用正六边形、正方形、正三角形拼成的.因为正六边形的内角为120°,正方形的内角为90°,正三角形的内角为60°,那么用1个正六边形,2个正方形和1个正三角形各一个内角之和为360°,所以可以铺满地面.(即:120°+2×90°+60°=360°)


    结论:若几个正多边形的一个内角的和等于360°,那么这几个正多边形可铺满地面.


    【例1】 正八边形地板砖,能铺满地面,既不留下一丝空白,又不相互重叠吗?请说明理由.


    分析:先算出正八边形每个内角的度数,再看每个内角度数能否整除360°.


    解:不能.∵正八边形每个内角是eq \f((8-2)×180°,8)=135°,不能整除360°,∴不能密铺.


    点评:正多边形的镶嵌应符合一个内角度数能整除360°.


    【例2】 某校要用地砖镶嵌艺术教室的地面,可以选择的方案有许多种,请你为其设计.


    (1)如果在以下形状的地砖中选取一种镶嵌地面,可以选择的有________.(填序号)


    ①正方形;②正五边形;③正六边形;④正八边形;⑤任意三角形;⑥任意四边形


    (2)如果在正三角形、正方形、正八边形这三种形状的地砖中,任意选取其中的两种,有几种可行的方案?


    (3)如果在正三角形、正六边形、正方形、正十二边形这四种形状的地砖中,任意选取其中三种,有几种可行的方案?


    分析:(1)由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.


    (2)分别求出各个正多边形的每个内角的度数,结合镶嵌的条件,分别计算即可求出答案.


    (3)分别求出各个正多边形的每个内角的度数,结合镶嵌的条件,分别计算即可求出答案.


    解:(1)①正方形的每个内角是90°,4个能组成镶嵌;②正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;③正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;④正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能密铺.⑤任意三角形 ⑥任意四边形都可以镶嵌平面.


    (2)正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能密铺.正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺.故共有两种可行的方案;


    (3)由题意可得出:正三角形、正四边形,正十二边形可以镶嵌地面; 正四边形,正六边形,正十二边形可以镶嵌地面;故有2种可行的方案.


    点评:用一种正多边形的镶嵌应符合一个内角度数能整除360°,任意多边形能进行镶嵌,说明它的内角和应能整除360°,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.


    三、巩固练习


    1下列几种形状的瓷砖中,只用一种不能够铺满地面的是( )


    A.正六边形 B.正五边形


    C.正方形 D.正三角形


    2.下列三组正多边形的组合:①正八边形和正方形;②正五边形和正八边形;③正六边形和正方形,能够铺满地面的组合是________(填序号即可).


    3.用边长相等的正方形和正三角形镶嵌平面.


    (1)则一个顶点处需要几个正方形、几个正三角形?(两种图形都要用上)


    (2)请画出你的镶嵌图.


    4.小红家购买了一套新房,准备用一种地板砖镶嵌新居地面,要求地板砖都是正多边形,且每块地板砖的各边长都相等,各个角也都相等、某家装饰材料市场有如下五种型号的地砖,它们每个角的度数分别为60°,90°,108°,120°,135°,你认为这些地板砖哪些适用?请说明你的理由.


    5.现有一批边长相等的正多边形瓷砖(如图所示),设计能铺满地面的瓷砖图案.





    (1)能用相同的正多边形铺满地面的有________.


    (2)从中任取两种来组合,能铺满地面的正多边形组合是________.


    (3)从中任取三种来组合,能铺满地面的正多边形组合是________.


    (4)你能说出其中的数学道理吗?


    四、小结与作业


    小结


    先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师加以补充.


    作业


    1.教材第91页“习题9.3”第1,2 题.


    2.完成练习册中本课时练习.





    本节课学习用正多边形铺设地面是在学习多边形的内角和与外角和的前提下来学习的,且是多边形在生活中应用的拓展.所以这节课,教师以生活中常见的地板瓷砖来创造问题情境,学生对此也 比较感兴趣,进而引导学生探索哪些正多边形能铺满地面.这一节课,内容比较简单,幻灯片的图片也比较形象、直观,所以学生比较感兴趣、课堂气氛也相对活跃,课堂效果比较成功.


    正多边形


    的边数
    3
    4
    5
    6
    7

    n
    正多边形


    的内角和
    180°
    360°
    540°
    720°
    900°

    (n-2)180°
    正多边形每


    个内角度数
    60°
    90°
    108°
    120°
    eq \f(900°,7)

    eq \f((n-2)180°,n)
    相关教案

    初中数学华师大版七年级下册1 用相同的正多边形教案设计: 这是一份初中数学华师大版七年级下册1 用相同的正多边形教案设计,共4页。

    数学七年级下册1 用相同的正多边形教案: 这是一份数学七年级下册1 用相同的正多边形教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    华师大版七年级下册1 用相同的正多边形优质教学设计: 这是一份华师大版七年级下册1 用相同的正多边形优质教学设计,共2页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【精品】新华东师大版 七年级数学下册第9章多边形9.3用正多边形铺设地面教案新
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map