终身会员
搜索
    上传资料 赚现金
    高中数学人教A版(2019)必修(第二册)(学案)空间直线、平面的平行
    立即下载
    加入资料篮
    高中数学人教A版(2019)必修(第二册)(学案)空间直线、平面的平行01
    高中数学人教A版(2019)必修(第二册)(学案)空间直线、平面的平行02
    高中数学人教A版(2019)必修(第二册)(学案)空间直线、平面的平行03
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行优质学案设计

    展开
    这是一份高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行优质学案设计,共15页。学案主要包含了第一学时,学习目标,学习重难点,学习过程,学习小结,精炼反馈,第二学时,第三学时等内容,欢迎下载使用。

    空间直线、平面的平行

    【第一学时】
    直线与直线平行
    【学习目标】
    1.理解基本事实4,并会用它解决两直线平行问题
    2.理解定理的内容,套用定理解决角相等或互补问题
    【学习重难点】
    1.基本事实4
    2.等角定理
    【学习过程】
    一、问题导学
    预习教材内容,思考以下问题:
    1.基本事实4的内容是什么?
    2.定理的内容是什么?




    二、新知探究

    基本事实4的应用
    例1:如图,E,F分别是长方体ABCD­A1B1C1D1的棱A1A,C1C的中点.求证:四边形B1EDF为平行四边形.







    定理的应用
    例2:如图所示,不共面的三条射线OA,OB,OC,点A1,B1,C1分别是OA,OB,OC上的点,且==.
    求证:△A1B1C1∽△ABC.




    【学习小结】
    1.基本事实4
    (1)平行于同一条直线的两条直线平行.这一性质通常叫做平行线的传递性.(2)符号表示:⇒a∥c.
    2.等角定理
    如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.
    【精炼反馈】
    1.如图,长方体ABCD­A1B1C1D1中,M是AD的中点,N是B1C1的中点,求证:CM∥A1N.




    【第二学时】
    直线与平面平行
    【学习目标】
    1.理解直线与平面平行的定义,会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,会用直线与平面平行的判定定理证明一些空间线面位置关系
    2.理解并能证明直线与平面平行的性质定理,明确定理的条件,能利用直线与平面平行的性质定理解决有关的平行问题
    【学习重难点】
    1.直线与平面平行的判定
    2.直线与平面平行的性质
    【学习过程】
    一、问题导学
    预习教材内容,思考以下问题:
    1.直线与平面平行的判定定理是什么?
    2.直线与平面平行的性质定理是什么?
    二、合作探究

    直线与平面平行的判定
    例1:如图,在正方体ABCD­A1B1C1D1中,E,F,G分别是BC,CC1,BB1的中点,求证:EF∥平面AD1G.





    线面平行性质定理的应用
    例2:如图,P是平行四边形ABCD所在平面外的一点,M是PC的中点,在DM上取一点G,过点G和AP作平面,交平面BDM于GH.求证:AP∥GH.





    【学习小结】
    1.直线与平面平行的判定定理

    文字语言
    如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行
    符号语言
    a⊄α,b⊂α,且a∥b⇒a∥α
    图形语言

    2.直线与平面平行的性质定理
    文字语言
    一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行
    符号语言
    a∥α,a⊂β,α∩β=b⇒a∥b
    图形语言

    【精炼反馈】
    1.已知b是平面α外的一条直线,下列条件中,可得出b∥α的是()
    A.b与α内的一条直线不相交
    B.b与α内的两条直线不相交
    C.b与α内的无数条直线不相交
    D.b与α内的所有直线不相交
    2.给出下列命题:
    ①如果一条直线不在平面内,则这条直线就与这个平面平行;
    ②过直线外一点,可以作无数个平面与这条直线平行;
    ③如果一条直线与平面平行,则它与平面内的任何直线平行.
    其中正确命题的个数为()
    A.0 B.1
    C.2 D.3
    3.三棱台ABC­A1B1C1中,直线AB与平面A1B1C1的位置关系是()
    A.相交 B.平行
    C.在平面内 D.不确定
    4.如图,直三棱柱ABC­A1B1C1中,D是AB的中点.证明:BC1∥平面A1CD.





    【第三学时】
    平面与平面平行
    【学习目标】
    1.理解平面与平面平行的定义,会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理,会用平面与平面平行的判定定理证明空间面面位置关系
    2.理解并能证明平面与平面平行的性质定理,能利用平面与平面平行的性质定理解决有关的平行问题
    【学习重难点】
    1.平面与平面平行的判定
    2.平面与平面平行的性质
    【学习过程】
    一、问题导学
    预习教材内容,思考以下问题:
    1.面面平行的判定定理是什么?
    2.面面平行的性质定理是什么?




    二、合作探究

    平面与平面平行的判定
    例1:如图所示,已知正方体ABCDA1B1C1D1.
    (1)求证:平面A1BD∥平面B1D1C;
    (2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.





    [变条件]把本例(2)的条件改为“E,F分别是AA1与CC1上的点,且A1E=A1A”,求F在何位置时,平面EB1D1∥平面FBD?
    解:当F满足CF=CC1时,两平面平行,下面给出证明:
    在D1D上取点M,
    且DM=DD1,
    连接AM,FM,
    则AED1M,
    从而四边形AMD1E是平行四边形.
    所以D1E∥AM.
    同理,FMCD,
    又因为ABCD,所以FMAB,
    从而四边形FMAB是平行四边形.所以AM∥BF.
    即有D1E∥BF.又BF⊂平面FBD,
    D1E⊄平面FBD,
    所以D1E∥平面FBD.
    又B1BD1D,从而四边形BB1D1D是平行四边形.故而B1D1∥BD,
    又BD⊂平面FBD,B1D1⊄平面FBD,
    从而B1D1∥平面FBD,
    又D1E∩B1D1=D1,
    所以平面EB1D1∥平面FBD.

    面面平行性质定理的应用
    例2:如图所示,两条异面直线BA,DC与两平行平面α,β分别交于点B,A和D,C,点M,N分别是AB,CD的中点,求证:MN∥平面α.






    1.[变条件]在本例中将M,N分别为AB,CD的中点换为M,N分别在线段AB,CD上,且=,其他不变.
    证明:MN∥平面α.
    证明:作AE∥CD交α于点E,连接AC,BD,如图.
    因为α∥β且平面AEDC与平面α,β的交线分别为ED,AC,所以AC∥ED,所以四边形AEDC为平行四边形,作NP∥DE交AE于点P,
    连接MP,BE,于是=.
    又因为=,所以=,所以MP∥BE.
    而BE⊂α,MP⊄α,所以MP∥α.同理PN∥α.
    又因为MP∩NP=P,所以平面MPN∥平面α.
    又MN⊂平面MPN,所以MN∥平面α.
    2.[变条件、变问法]两条异面直线与三个平行平面α,β,γ分别交于A,B,C和D,E,F,求证:=.
    证明:连接AF交平面β于点M.
    连接MB,ME,BE,AD,CF,因为α∥β,
    所以ME∥AD.
    所以=.
    同理,BM∥CF,
    所以=,
    即=.

    平行关系的综合问题
    例3:在正方体ABCDA1B1C1D1中,如图.
    (1)求证:平面AB1D1∥平面C1BD;
    (2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明:A1E=EF=FC.




    【学习小结】
    1.平面与平面平行的判定定理
    文字语言
    如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行
    符号语言
    a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α
    图形语言

    2.平面与平面平行的性质定理
    文字语言
    两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行
    符号语言
    α∥β,α∩γ=a,β∩γ=b⇒a∥b
    图形语言

    【精炼反馈】
    1.已知α,β是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是()
    A.平面α内有一条直线与平面β平行
    B.平面α内有两条直线与平面β平行
    C.平面α内有一条直线与平面β内的一条直线平行
    D.平面α与平面β不相交
    2.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA,PB,PC于A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于()
    A.2∶25 B.4∶25
    C.2∶5 D.4∶5
    3.在棱长为2的正方体ABCD­A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.





    4.如图,已知AB与CD是异面直线,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H.求证:四边形EFGH是平行四边形.

    【参考答案】
    【第一学时】
    二、新知探究
    例1:【答案】如图所示,取DD1的中点Q,连接EQ,QC1.
    因为E是AA1的中点,所以EQA1D1.
    因为在矩形A1B1C1D1中,A1D1B1C1,
    所以EQB1C1,
    所以四边形EQC1B1为平行四边形,所以B1EC1Q.
    又Q,F分别是D1D,C1C的中点,
    所以QDC1F,
    所以四边形DQC1F为平行四边形,
    所以C1QFD.
    又B1EC1Q,所以B1EFD,
    故四边形B1EDF为平行四边形.

    例2:【答案】在△OAB中,因为=,所以A1B1∥AB.
    同理可证A1C1∥AC,B1C1∥BC.
    所以∠C1A1B1=∠CAB,∠A1B1C1=∠ABC.
    所以△A1B1C1∽△ABC.
    【精炼反馈】
    1.【答案】证明:取A1D1的中点P,连接C1P,MP,则A1P=A1D1.又N为B1C1的中点,B1C1A1D1,
    所以C1NPA1,四边形PA1NC1为平行四边形,A1N∥C1P.
    又由PMDD1CC1,得C1P∥CM.所以CM∥A1N.
    2.【答案】如图,已知直线a,b为异面直线,A,B,C为直线a上三点,D,E,F为直线b上三点,A′,B′,C′,D′,E′分别为AD,DB,BE,EC,CF的中点.求证:∠A′B′C′=∠C′D′E′.

    证明:因为A′,B′分别是AD,DB的中点,所以A′B′∥a,
    同理C′D′∥a,B′C′∥b,D′E′∥b,所以A′B′∥C′D′,B′C′∥D′E′.
    又∠A′B′C′的两边和∠C′D′E′的两边的方向都相同,
    所以∠A′B′C′=∠C′D′E′.
    【第二学时】
    二、合作探究
    例1:【答案】连接BC1,则由E,F分别是BC,CC1的中点,知EF∥BC1.
    又ABA1B1D1C1,所以四边形ABC1D1是平行四边形,
    所以BC1∥AD1,所以EF∥AD1.
    又EF⊄平面AD1G,AD1⊂平面AD1G,
    所以EF∥平面AD1G.
    例2:【答案】如图,连接AC,交BD于点O,连接MO.
    因为四边形ABCD是平行四边形,
    所以点O是AC的中点.
    又因为点M是PC的中点,
    所以AP∥OM.
    又因为AP⊄平面BDM,OM⊂平面BDM,
    所以AP∥平面BDM.
    因为平面PAHG∩平面BDM=GH,
    AP⊂平面PAHG,所以AP∥GH.
    【精炼反馈】
    1.【答案】D
    【解析】选D.若b与α内的所有直线不相交,即b与α无公共点,故b∥α.
    2.【答案】B
    【解析】选B.①中,直线可能与平面相交,故①错;②是正确的;③中,一条直线与平面平行,则它与平面内的直线平行或异面,故③错.
    3.【答案】B
    【解析】选B.在三棱台ABC­A1B1C1中,AB∥A1B1,AB⊄平面A1B1C1,A1B1⊂平面A1B1C1,所以AB∥平面A1B1C1.
    4.【答案】证明:如图,连接AC1交A1C于点F,则F为AC1的中点.
    又D是AB的中点,连接DF,则DF∥BC1.
    因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.

    【第三学时】
    例1:【答案】(1)因为B1BDD1,
    所以四边形BB1D1D是平行四边形,
    所以B1D1∥BD,又BD⊄平面B1D1C,
    B1D1⊂平面B1D1C,所以BD∥平面B1D1C.
    同理A1D∥平面B1D1C.
    又A1D∩BD=D,
    所以平面A1BD∥平面B1D1C.
    (2)由BD∥B1D1,
    得BD∥平面EB1D1.
    取BB1的中点G,
    连接AG,GF,
    易得AE∥B1G,
    又因为AE=B1G,
    所以四边形AEB1G是平行四边形,
    所以B1E∥AG.
    易得GF∥AD,又因为GF=AD,
    所以四边形ADFG是平行四边形,
    所以AG∥DF,所以B1E∥DF,
    所以DF∥平面EB1D1.
    又因为BD∩DF=D,
    所以平面EB1D1∥平面FBD.
    例2:【证明】如图,过点A作AE∥CD交α于点E,取AE的中点P,连接MP,PN,BE,ED,BD,AC.
    因为AE∥CD,所以AE,CD确定平面AEDC.
    则平面AEDC∩α=DE,平面AEDC∩β=AC,因为α∥β,所以AC∥DE.
    又P,N分别为AE,CD的中点,
    所以PN∥DE,PN⊄α,DE⊂α,所以PN∥α.
    又M,P分别为AB,AE的中点,
    所以MP∥BE,且MP⊄α,BE⊂α.
    所以MP∥α,因为MP∩PN=P,
    所以平面MPN∥α.
    又MN⊂平面MPN,所以MN∥平面α.
    例3:【答案】解:(1)证明:因为在正方体ABCDA1B1C1D1中,ADB1C1,
    所以四边形AB1C1D是平行四边形,
    所以AB1∥C1D.
    又因为C1D⊂平面C1BD,AB1⊄平面C1BD.
    所以AB1∥平面C1BD.
    同理B1D1∥平面C1BD.
    又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.
    (2)如图,连接A1C1交B1D1于点O1,连接A1C,连接AO1与A1C交于点E.
    又因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点;
    连接AC交BD于O,连接C1O与A1C交于点F,则点F就是A1C与平面C1BD的交点.证明A1E=EF=FC的过程如下:
    因为平面A1C1C∩平面AB1D1=EO1,
    平面A1C1C∩平面C1BD=C1F,
    平面AB1D1∥平面C1BD,所以EO1∥C1F.
    在△A1C1F中,O1是A1C1的中点,
    所以E是A1F的中点,即A1E=EF;
    同理可证OF∥AE,
    所以F是CE的中点,
    即CF=FE,所以A1E=EF=FC.
    【精炼反馈】
    1.【答案】D
    【解析】选D.选项A、C不正确,因为两个平面可能相交;选项B不正确,因为平面α内的这两条直线必须相交才能得到平面α与平面β平行;选项D正确,因为两个平面的位置关系只有相交与平行两种.故选D.
    2.【答案】B
    【解析】选B.因为平面α∥平面ABC,平面PAB与它们的交线分别为A′B′,AB,
    所以AB∥A′B′,
    同理B′C′∥BC,
    易得△ABC∽△A′B′C′,
    S△A′B′C′∶S△ABC===.
    3.【答案】
    【解析】在正方体ABCD­A1B1C1D1中,
    因为平面MCD1∩平面DCC1D1=CD1,
    所以平面MCD1∩平面ABB1A1=MN,
    且MN∥CD1,
    所以N为AB的中点,
    所以该截面为等腰梯形MNCD1,
    因为正方体的棱长为2,
    易知,MN=,CD1=2,MD1=,
    所以等腰梯形MNCD1的高MH==.
    所以截面面积为(+2)×=.
    4.【答案】证明:因为AB∥平面α,AB⊂平面ABC,
    平面ABC∩平面α=EH,所以AB∥EH,
    因为AB∥平面α,AB⊂平面ABD,
    平面ABD∩平面α=FG,
    所以AB∥FG,所以EH∥FG,
    同理由CD∥平面α可证EF∥GH,
    所以四边形EFGH是平行四边形.

    相关学案

    【同步导学案】高中数学人教A版(2019)必修第二册--8.6 空间直线、平面的垂直 导学案(原卷版+解析版): 这是一份【同步导学案】高中数学人教A版(2019)必修第二册--8.6 空间直线、平面的垂直 导学案(原卷版+解析版),文件包含同步导学案高中数学人教A版2019必修第二册--86空间直线平面的垂直导学案原卷版docx、同步导学案高中数学人教A版2019必修第二册--86空间直线平面的垂直导学案解析版docx等2份学案配套教学资源,其中学案共14页, 欢迎下载使用。

    【同步导学案】高中数学人教A版(2019)必修第二册--8.5 空间直线、平面的平行 导学案(原卷版+解析版): 这是一份【同步导学案】高中数学人教A版(2019)必修第二册--8.5 空间直线、平面的平行 导学案(原卷版+解析版),文件包含同步导学案高中数学人教A版2019必修第二册--85空间直线平面的平行导学案原卷版docx、同步导学案高中数学人教A版2019必修第二册--85空间直线平面的平行导学案解析版docx等2份学案配套教学资源,其中学案共8页, 欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行学案: 这是一份高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行学案,共13页。学案主要包含了知识梳理,典型例题1,典型例题2,核心问题还是找平行线,典型例题3,考点分类,章节学习总结,课后检测等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学人教A版(2019)必修(第二册)(学案)空间直线、平面的平行
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map