中考数学几何模型加强版 模型26 其他型解直角三角形
展开专题26 其他型解直角三角形
一、单选题
1.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比),山坡坡底C点到坡顶D点的距离,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为( )
(参考数据:,,)
A.76.9m B.82.1m C.94.8m D.112.6m
二、解答题
2.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为,沿坡面AB向上走到B处测得广告牌顶部C的仰角为,已知山坡AB的坡度,米,广告牌CD的高度为3米.
求点B距水平面AE的高度BH;
求楼房DE的高度测角器的高度忽略不计,结果保留根号
3.如图,052D型驱逐舰“昆明舰”执行任务后正返回葫芦岛军港C,途经渤海海域A处时,葫芦岛军港C的中国海军发现点A在南偏东30°方向上,旅顺军港B的中国海军发现点A在正西方向上.已知军港C在军港B的北偏西60°方向,且B、C两地相距120海里,(计算结果保留根号)
(1)求出此时点A到军港C的距离;
(2)若“昆明舰”从A处沿AC方向向军港C驶去,当到达A'时,测得军港B在A'的南偏东75°的方向上,求此时“昆明舰”的航行距离.
4.如图,在一条笔直的海岸线上有,两个观测站,在的正东方向.有一艘小船从处沿北偏西方向出发,以每小时20海里速度行驶半小时到达处,从处测得小船在它的北偏东的方向上.
(1)求的距离;
(2)小船沿射线的方向继续航行一段时间后,到达点处,此时,从测得小船在北偏西的方向.求点与点之间的距离.(上述两小题的结果都保留根号)
5.如图,四边形钢板是某机器的零部件,工程人员在设计时虑到飞行的稳定性和其他保密性原则,使得边沿AD的长度是边沿BC长度的三倍,且它们所在的直线互相平行,检测员王刚参与了前期零件的基础设计,知道∠ABC=45°,边沿CD所在直线与边沿BC所在直线相交后所成的锐角为30°(即P在BC的延长线上,∠DCP=30°),经测量BC的长度为7米,求零件的边沿CD的长.(结果保留根号)
6.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长,拉杆的伸长距离最大时可达,点、、在同一条直线上,在箱体底端装有圆形的滚筒,与水平地面切于点,在拉杆伸长至最大的情况下,当点距离水平地面时,点到水平面的距离为,设AF∥MN.
(1)求的半径长;
(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在端拉旅行箱时,为,,求此时拉杆的伸长距离.(精确到,参考数据:,,)
7.如图,一艘渔船正以海里/小时的速度由西向东赶鱼群,在A处看小岛C在船北偏东60°,60分钟后,渔船行至B处,此时看见小岛C在船的北偏东30°.
(1)求小岛C到航线AB的距离.
(2)已知以小岛C为中心周围20海里内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能?若渔船进去危险区,那么经过多少分钟可穿过危险区?
8.我南海巡逻船接到有人落水求救信号,如图,巡逻船观测到,同时,巡逻船观测到,两巡逻船相距63海里,求此时巡逻船与落水人的距离?(参考数据:,,,)
9.课间休息时小明同学望向窗外,看着校园里的一棵古树突发奇想,能不能利用刚学过的数学知识来测量这棵古树的高度呢?经过思考他和同学们一起实践起来.如图所示,他站在教室里点A处的凳子上,从教室的窗口望出去,恰好能看见古树的整个树冠DK,古树长在一个小坡上,经测量,斜坡HJ长2.2米,坡角∠JHL=30°,窗口高EF=1.2米,树干底部KC=0.9m,A点距墙根G为1.5m,树干距墙面的水平距离IC为4.5m,请根据上面的信息,计算出树项到地面的距离DL的长度.
10.图1是一款折叠式跑步机,由支杆AE(点A、E固定),滑动杆PF和底座AD组成,AC为滑槽,图2是其侧面简化示意图,忽略跑步机的厚度,已知AE=60cm ,AC=120cm,收纳时,当滑动端点P向右滑至点C时,滑动杆PF恰好与滑槽AC重合.
(1)如图3,当滑动端点P滑至AC的中点B时,求点F到底座AD的距离;
(2)当滑动端点P从点B向左滑动到点Q,PF与AD的夹角是70°时,小明观察点F处的仪表盘视角为最佳,求此时滑动端点P继续向左滑动的距离BQ的长(参考数据:,,,,结果保留一位小数.)
11.如图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为70°时,箱盖ADE落在AD′E′的位置(如图2).已知AD=100厘米,点D到地面距离为110厘米.求点D′离地面的高度.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
12.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;
(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.
13.如图,在正方形中,点在边上(不与点,重合),连结,交于点.
(1)若点为中点,,求的长.
(2)若,求的值.
(3)若点在线段上,且,连结、,,四边形的面积为,的面积为,求的最大值.
14.有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图,和是两根相同长度的活动支撑杆,点是它们的连接点,表示熨烫台的高度.
(1)如图2-1,若,求的长(结果保留根号) ;
(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为时,两根支撑杆的夹角是,求该熨烫台支撑杆的长度. (参考数据:)
15.如图所示的是--款机械手臂,由上臂、中臂和底座三部分组成,其中上臂和中臂可自由转动,底座与水平地面垂直.在实际运用中要求三部分始终处于同一平面内,其示意图如图1所示,经测量,上臂,中臂,底座
(1)若上臂与水平面平行,.计算点到地面的距离.
(2)在一次操作中,中臂与底座成夹角,上臂与中臂夹角为,如图2,计算这时点到地面的距离.与图1状态相比,这时点A向前伸长了多少?
16.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形为矩形,,其坡度为,将步梯改造为斜坡,其坡度为,求斜坡的长度.(结果精确到,参考数据:,)
17.如图,为了测量某条河的对岸边C,D两点间的距离,在河的岸边与平行的直线上取两点A,B,测得,,量得长为70米.求C,D两点间的距离(参考数据:,,).
18.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量.先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°.居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
19.2018年9月21日“盐城大铜马“顺利回归,如图,小丽和小明决定用所学的知识测量大铜马AB的高度,按照以下方式合作并记录所得数据:小明测得基座下部BE长为1.8米,基座BC高为6.12米,在E点处测得点F的仰角为80.72°,小丽沿直线BE步行到达点D处测得点A和点F的仰角分别为60.18°和50.75°,若A、B、C、D、E、F在同一平面内且B、E、D和A、C、B分别在同一直线上,请分别求出CF和大铜马AB的高度.(结果精确到0.01米,参考数据sin80.72°=0.987,cos80.72°=0.161,tan80.72°=6.12,sin60.18°=0.868,cos60.18°=0.497,tan60.18°=1.74,sin50.75°=0.774,cos50.75°=0.663,tan50.75°=1.224)
20.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线的距离皆为.王诗嬑观测到高度矮圆柱的影子落在地面上,其长为;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,测得斜坡坡度,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:
(1)若王诗嬑的身高为,且此刻她的影子完全落在地面上,则影子长为多少?
(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?
(3)若同一时间量得高圆柱落在坡面上的影子长为,则高圆柱的高度为多少?
21.如图,在中,,以AB为直径的分别交AC、BC于点D、E,点F在AC的延长线上,且.
(1)求证:BF是的切线;
(2)若的直径为4,,求.
22.如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,测角仪高AF=2米,先在A处测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走20米到达B处(AB=20米),又测得教学楼顶端G的仰角∠GED为60°.点A、B、C三点在同一水平线上.
(1)求古树BH的高;
(2)求教学楼CG的高.(结果保留根号)
23.郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)
三、填空题
24.如图,梯形是拦水坝的横断面图,(图中是指坡面的铅直高度与水平宽度的比),,,,拦水坝的横断面的面积是________(结果保留三位有效数字,参考数据:,)
25.如图,是高为30米的某一建筑,在水塘的对面有一段以为坡面的斜坡,小明在点观察点的俯角为,在点观察点的俯角为,若坡面的坡度为,则的长为__________.
26.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测得操控者A和教学楼BC距离为57米,则教学楼BC的高度为______米.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
27.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________时,才能确保山体不滑坡.(取)
中考数学几何模型加强版 模型27 平行线侧M型: 这是一份中考数学几何模型加强版 模型27 平行线侧M型,文件包含模型27平行线侧M型原卷版docx、模型27平行线侧M型解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
中考数学几何模型加强版 模型23 一字并肩型解直角三角形: 这是一份中考数学几何模型加强版 模型23 一字并肩型解直角三角形,文件包含模型23一字并肩型解直角三角形原卷版docx、模型23一字并肩型解直角三角形解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
中考数学几何模型加强版 模型08 互补型旋转: 这是一份中考数学几何模型加强版 模型08 互补型旋转,文件包含模型08互补型旋转原卷版docx、模型08互补型旋转解析版docx等2份试卷配套教学资源,其中试卷共69页, 欢迎下载使用。