- 北师大版七年级下册数学 4.2图形的全等导学案 学案 22 次下载
- 北师大版七年级下册数学 4.3探索三角形全等的条件导学案 学案 23 次下载
- 北师大版七年级下册数学 4.5利用三角形测高导学案 学案 20 次下载
- 北师大版七年级下册数学 5.1轴对称现象导学案 学案 15 次下载
- 北师大版七年级下册数学 5.2探索轴对称的性质(无答案)导学案 学案 15 次下载
初中数学北师大版七年级下册第四章 三角形4 用尺规作三角形学案及答案
展开用尺规作三角形
复习:1、探索全等条件时,有四种证明方法:
边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)
而尺规作图根据就是三角形全等的条件
2、尺规作线段、与尺规作角,在前面已经学习了,请同学自行复习
(尺规做线段在七上四章二节、尺规作角在七下二章四节)
1、边边边:已知三角形三边,求做三角形做法如下:
2、已知三角形的两边及其夹角,求作这个三角形。
3、已知三角形的两角及其夹边,求作这个三角形.
画图思路: 1. 假设所求作的图形已经作出,并在草稿纸上作出草图;
2. 在草图上标出已给的边、角的对应位置;
3. 从草图中首先找出基本图形,由此确定作图的起始步骤;
4. 在3的基础上逐步向所求图形扩展。
注意:1、在作图时,要注意保留作图痕迹
2、要注意语言的规范性,;例如:(1)作∠ ······· = ∠·······,(2)在······上截取,使······=······;(3)以···为顶点,以······为一边,作∠······ =∠······;(4)作一条线段······ = ······ ;(5)连接······ ,或连接······交······于点······ ;(6)分别以··· , ···为圆心,以··· , ···为半径画弧,两弧交于···点;
3、因为上面及课本只陈述了边边边(SSS)、边角边(SAS)、角边角(ASA)三种画图的方法,唯独少了角角边(AAS),因为这种方法的尺规作图十分复杂;而且因为角边角(ASA)和角角边(AAS)这两种证明方法可以根据三角形的内角和相互转化,所以只需要掌握角角边(AAS)的尺规作图即可。
4、辨析:为什么已知三角形的两边及一角并不都能只确定一个三角形。
例:已知线段a,b和∠α,求作△ABC,使其有一个内角等于∠α,且∠α的对边等于a,另有一边等于b。
分析:先在草纸上画出一个假设的“已作出的三角形”;然后在草图上标出已给的边、角的对应位置;再找出边与角,确定作图的顺序。
同样是已知两边及一角,为什么会出现两个三角形呢?
作法:
1. 作∠MAN=∠α
2. 在射线AM上截取AB=b
3. 以B为圆心,以a为半径画弧,交AN于点C, C'
4. 连接BC,BC'
得到△ABC和△ABC'就是所求作的三角形
所以根据上述步骤及图像的绘画:已知三角形的两边及一角并不都能只确定一个三角形。当已知两边及夹角时可以确定一个三角形,因此可以用来判定两个三角形全等;而当已知两边及一边的对角时,会画出两个不同的三角形,因此不能用来作为判别两个三角形全等的条件。
简而言之,三角形尺规作图,需明白所给出已知条件之间关系,尤其是角边条件都知道的时候————是夹角还是对角,是夹边还是对边。
例题练习:
1、利用尺规不能唯一作出的三角形是( )
A.已知三边
B.已知两边及夹角
C.已知两角及夹边
D.已知两边及其中一边的对角
2.利用尺规不可作的直角三角形是 ( )
A.已知斜边及一条直角边
B.已知两条直角边
C.已知两锐角
D.已知一锐角及一直角边
3.以下列线段为边能作三角形的是 ( )
A.2厘米、3厘米、5厘米
B.4厘米、4厘米、9厘米
C.1厘米、2厘米、 3厘米
D.2厘米、3厘米、4厘米
4、利用尺规作图不能作出唯一三角形的是 ( )
A.已知三边
B.已知两边及夹角
C.已知两角及夹边
D.已知三个角
5、按下列条件画三角形,能唯一确定三角形形状和大小的是 ( )
A.三角形的一个内角为60°,一条边长为3 cm
B.三角形的两个内角为30°和70°
C.三角形的两条边长分别为3 cm和5 cm
D.三角形的三条边长分别为4 cm、5 cm和8 cm
6、4.下列作图中,只用无刻度的直尺就能够作出的是( )
A.连接A,B两点并延长
B.作∠MON等于已知角∠α
C.作线段AB等于已知线段
D.作已知角的2倍
6、如图,△ABC中,a=5 cm,b=3 cm,c=4 cm,∠B=30°,∠C=40°.选择适当数据,
作出与△ABC全等的三角形,写出所有的情况,看共有几种作法.
7、、已知线段a,b和m,如图①,求作△ABC,使BC=2a,AC=b,BC边上的中线AD=m.盈盈想出了一种作法,根据图②中的作图痕迹,你能想出她是怎样作出来的吗?把她的具体作法写下来吧!
①
②
8、如图所示,已知线段a,c和∠α,求作:△ABC,使BC=a,AB=c,∠ABC=∠α,根据作图在下面空格填上适当的文字或字母.
(1)如图①所示,作∠MBN= ;
(2)如图②所示,在射线BM上截取BC= ,在射线BN上截取BA= ;
(3)连接 ,如图③所示,△ABC就是所求作的三角形.
9、如图,已知△ABC.按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD,CD.
求证:△ABC≌△ADC.
10、如图,要求画一个三角形,使其两条边长分别是1 cm和2 cm,一个内角为
40°.
11、已知∠β和线段a,b,用直尺和圆规作△ABC,使∠B=∠β,BC=a,
AC=b,这样的三角形能作几个?(保留作图痕迹)
初中数学北师大版七年级上册4.4 角的比较学案设计: 这是一份初中数学北师大版七年级上册4.4 角的比较学案设计,共5页。
浙教版七年级上册第4章 代数式4.4 整式优秀导学案: 这是一份浙教版七年级上册第4章 代数式4.4 整式优秀导学案,共4页。学案主要包含了学习目标,预习领航,新知导学,课后拓展,学后反思小结等内容,欢迎下载使用。
北师大版七年级上册4.4 角的比较学案设计: 这是一份北师大版七年级上册4.4 角的比较学案设计,共5页。学案主要包含了变式练习等内容,欢迎下载使用。