初中数学人教版八年级下册17.1 勾股定理优秀课件ppt
展开1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体 会数形结合的思想.(重点)2.会用勾股定理进行简单的计算 .(难点)
据说我国著名的数学家华罗庚曾建议“发射”一种勾股定理的图形(如图).
很多学者认为如果宇宙“人”也拥有文明的话,那么他们一定会认识这种语言,因为几乎所有具有古代文化的民族和国家都对勾股定理有所了解.
知识点1 勾股定理的认识及验证
我们一起穿越回到2500年前,跟随毕达哥拉斯再去他那位老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面(如图):
问题1 试问正方形A、B、C面积之间有什么样的数量关系?
问题2 图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?
问题3 在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):
这两幅图中A,B的面积都好求,该怎样求C的面积呢?
方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):
方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):
你还有其他办法求C的面积吗?
根据前面求出的C的面积直接填出下表:
思考 正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?
命题1 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
由上面的几个例子,我们猜想:
下面动图形象的说明命题1的正确性,让我们跟着以前的数学家们用拼图法来证明这一猜想.
证法1 让我们跟着我国汉代数学家赵爽拼图,再用所拼的图形证明命题吧.
S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.因为,这个图案被选为2002年在北京召开的国际数学大会的会徽.
证法2 毕达哥拉斯证法,请先用手中的四个全等的直角三角形按图示进行拼图,然后分析其面积关系后证明吧.
∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
证明:∵S大正方形=(a+b)2=a2+b2+2ab,
∴a2 + b2 = c2.
证法3 美国第二十任总统伽菲尔德的“总统证法”.
如图,图中的三个三角形都是直角三角形,求证:a2 + b2 = c2.
在我国又称商高定理,在外国则叫毕达哥拉斯定理,或百牛定理.
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.
知识点2 利用勾股定理进行计算
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
(2)若a=1,c=2,求b.
(1)若a:b=1:2 ,c=5,求a;
(2)若b=15,∠A=30°,求a,c.
【变式题1】在Rt△ABC中, ∠C=90°.
x2+(2x)2=52,
因此设a=x,c=2x,根据勾股定理建立方程得
(2x)2-x2=152,
已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.
【变式题2】 在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:当AB为斜边时,如图,当BC为斜边时,如图,
当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.
例2 已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
解:由勾股定理可得 AB2=AC2+BC2=25, 即 AB=5. 根据三角形面积公式, ∴ AC×BC= AB×CD. ∴ CD= .
由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.
求下列图中未知数x、y的值:
解:由勾股定理可得 81+ 144=x2, 解得x=15.
解:由勾股定理可得 y2+ 144=169,解得 y=5
在Rt△ABC中, ∠C=90°,a,b为直角边,c为斜边,则有a2+b2=c2.
已知两边没有指明是直角边还是斜边时一定要分类讨论
1.下列说法中,正确的是 ( )A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
2.图中阴影部分是一个正方形,则此正方形的面积为 .
3.在△ABC中,∠C=90°.(1)若a=15,b=8,则c= . (2)若c=13,b=12,则a= .4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.
5.求斜边长17 cm、一条直角边长15 cm的直角三角形的面积.
解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289–225=64,∴ x=±8(负值舍去),∴另一直角边长为8 cm,
直角三角形的面积是
6.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴BD=AD=1,∴AB= .在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD= ,∴BC=BD+CD=1+ ,∴△ABC的周长=AB+AC+BC= .
初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理集体备课ppt课件: 这是一份初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理集体备课ppt课件,共25页。PPT课件主要包含了学习目标,勾股定理的发现,观察并填写下表,SA+SBSC,c13,a20,勾股定理的证明,Sa2+b2,即c2a2+b2,基础巩固等内容,欢迎下载使用。
初中人教版第十七章 勾股定理17.1 勾股定理教课课件ppt: 这是一份初中人教版第十七章 勾股定理17.1 勾股定理教课课件ppt,共44页。PPT课件主要包含了学习目标,用勾股定理解决问题,勾股定理的应用,基础巩固,AC8,AB17,综合应用,误区诊断,错解A或B,正解C等内容,欢迎下载使用。
人教版八年级下册17.1 勾股定理示范课课件ppt: 这是一份人教版八年级下册17.1 勾股定理示范课课件ppt,共21页。PPT课件主要包含了情境引入,探究新知,如何证明这个命题,拓展应用,我们应先求出什么量,先求出对角线,线段BD,线段OBOD,怎么求OBOD呢,类题运用等内容,欢迎下载使用。