所属成套资源:2021年中考数学一轮复习基础夯实(安徽专用)
考点01 事件与概率-2021年中考数学一轮复习基础夯实(安徽专用)
展开
这是一份考点01 事件与概率-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点01事件与概率原卷版docx、考点01事件与概率解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
考点一 事件与概率知识点整合一、事件的分类1.必然事件:在一定条件下一定会发生的事件,它的概率是1.2.不可能事件:在一定条件下一定不会发生的事件,它的概率是0.3.随机事件:在一定条件下可能发生,也可能不发生的事件,它的概率是0~1之间.二、概率的计算1.公式法P(A)=,其中n为所有事件的总数,m为事件A发生的总次数.2.列举法(1)列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,应不重不漏地列出所有可能的结果,通常采用列表法求事件发生的概率.(2)画树状图法:当一次试验要涉及2个或更多的因素时,通常采用画树状图来求事件发生的概率.三、利用频率估计概率1.定义一般地,在大量重复试验中,如果事件发生的频率稳定在某个常数P附近,因此,用一个事件发生的频率来估计这一事件发生的概率.2.适用条件当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,我们一般要通过统计频率来估计概率.3.方法进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.四、概率的应用概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象做出评判,如解释摸奖、评判游戏活动的公平性、数学竞赛获奖的可能性等等,还可以对某些事件做出决策.考向一 事件的分类1.一般地,不确定事件发生的可能性是有大小的,它的大小要由它在整个问题中所占比例的大小来确定,它占整体的比例大,它的可能性就大,它占整体的比例小,它的可能性就小,不确定事件发生的概率在0到1之间,不包括0和1.2.必然事件发生的机率是100%,即概率为1,不可能事件发生的机率为0,即概率为0.典例引领1.(2019·山西九年级专题练习)下列判断正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.变式拓展1.(2019·南昌市外国语学校九年级月考)下列事件中必然发生的事件是( )A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【答案】C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.考向二 概率的计算在用列举法解题时,一定要注意各种情况出现的可能性务必相同,不要出现重复、遗漏等现象.典例引领1.(2019·河南襄城县·九年级期末)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A. B. C. D.【答案】C【解析】分析:先设阴影部分的面积是x,得出整个图形的面积是7x,再根据几何概率的求法即可得出答案.详解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是,故选:C.点睛:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.变式训练1.(2020·江西寻乌县·九年级期末)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A. B. C. D.【答案】D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.(2020·河南襄城县·九年级期末)下列计算① ② ③ ④ ⑤,其中任意抽取一个,运算结果正确的概率是( )A. B. C. D.【答案】A【解析】【分析】根据计算结果和概率公式求解即可.【详解】运算结果正确的有⑤,则运算结果正确的概率是,故选:A.【点睛】考核知识点:求概率.熟记公式是关键.考向三 利用频率估计概率在大量重复试验中,随着统计数据的增大,频率稳定在某个常数左右,将该常数作为概率的估计值,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性,二者并不完全相同.典例引领1.(2020·温州市南浦实验中学九年级期末)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A.20 B.24 C.28 D.30【答案】D【详解】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.变式拓展1.(2019·内蒙古满洲里市·九年级一模)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.2.(2017·山西九年级专题练习)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( )A.① B.② C.①② D.①③【答案】B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.3.(2020·全国八年级课时练习)某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( )A.8000条 B.4000条 C.2000条 D.1000条【答案】B【解析】试题解析:∵300条鱼中发现有标记的鱼有15条,∴有标记的占到,∵有200条鱼有标记,∴该河流中有野生鱼200÷=4000(条);故选B.4.(2019·浙江杭州市·九年级期末)如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为( )A.①②④③ B.③②④① C.③④②① D.④③②①【答案】A【详解】解:图1阴影部分为270°,图2阴影部分为240°,图3每份为45°,阴影部分共4份为180°,图4每份为45°阴影部分共5份为225°,所以①②④③,故选A.5.(2018·全国九年级单元测试)在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为( ).A. B. C. D.【答案】C【分析】按照题意分别找出点C所在的位置的个数,再找出其中满足的面积为1的C点个数,再根据概率公式求出概率即可.【详解】解:如图所示,点C所放在格点上的位置共有16种可能,而能使△ABC的面积为1的点共有如图4种可能,故恰好使△ABC的面积为1的概率为:.故本题正确答案为C.【点睛】熟练掌握三角形的基本概念和求随机事件的概率是解本题的关键.
相关试卷
这是一份考点01 线段与角-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01线段与角解析版docx、考点01线段与角原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01事件与概率解析版docx、考点01事件与概率原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份考点01 尺规作图-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01尺规作图解析版docx、考点01尺规作图原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。